OpenCV中的三种图像数据结构CvMat, IplImage和Mat(二)IplImage

本文为原创,若有错误欢迎批评指正!


一. IplImage结构体构成

IplImage比CvMat要复杂一些,结构体组成如下:

 

typedef struct _IplImage 
{ 
    int nSize;    /* IplImage大小 */
    int ID;    /* 版本 (=0)*/
    int nChannels;  /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */ 
    int alphaChannel;  /* 被OpenCV忽略 */ 
    int depth;   /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U, 
                IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */ 
    
    char colorModel[4]; /* 被OpenCV忽略 */ 
    char channelSeq[4]; /* 被OpenCV忽略 */ 
    int dataOrder;      /* 0 - 交叉存取颜色通道, 意思是在每一行的结构都是BGRBGRBGR...
				1 - 分开的颜色通道,把几个颜色通道分为几个颜色平面存储
					cvCreateImage只能创建交叉存取图像 */ 
    int origin;     /* 0 - 顶—左结构,1 - 底—左结构 (Windows bitmaps 风格) */ 
    int align;     /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */ 
    
    int width;     /* 图像宽像素数 */ 
    int height;    /* 图像高像素数*/ 
    
    struct _IplROI *roi;  /* 图像感兴趣区域. 当该值非空只对该区域进行处理 */ 
    struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */ 
    void *imageId;  /* 同上*/ 
    struct _IplTileInfo *tileInfo;  /*同上*/ 
    
    int imageSize;    /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/ 
    char *imageData;    /* 指向排列的图像数据 */ 
    int widthStep;     /* 排列的图像行大小,以字节为单位 */ 
    int BorderMode[4];     /* 边际结束模式, 被OpenCV忽略 */ 
    int BorderConst[4];    /* 同上 */ 
    
    char *imageDataOrigin;    /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */ 
} IplImage;


这里比较重要的参数是height、width、depth和nChannels。

 


 

二. 访问图像数据

与CvMat类似,都有三种方法。

首先是函数的方法:

 

/*函数的方法*/
IplImage* img=cvLoadImage(filename);
CvScalar s;       /*sizeof(s) == img->nChannels*/
s=cvGet2D(img,i,j);  /*get the (i,j) pixel value*/
cvSet2D(img,i,j,s);   /*set the (i,j) pixel value*/


采用宏的方法:

 

 

/*宏*/
IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
for(int row = 0; row < img->height; row++)
{
    for (int col = 0; col < img->width; col++)
    {
        b = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 0); 
        g = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 1); 
        r = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 2);
    }
}


接下来是最推崇的使用指针的方法。在这之前要弄清楚IplImage与Cvmat的一些差别,剩下的用法类似。IplImage在计算行地址的时候也要采用行长度widthStep而不是图像的宽度,与CvMat中step类似。IplImage图像的首地址记作imageData,与CvMat中data类似。IplImage访问时指针设置为(uchar*),而CvMat中data为联合类型,必须说明使用的指针类型。

 

 

/*指针访问*/
IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
uchar b, g, r; // 3 channels
for(int row = 0; row < img->height; row++)
{
    for (int col = 0; col < img->width; col++)
    {
        b = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 0]; 
        g = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 1]; 
        r = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 2];
    }
}

 

三. 一个比较综合的应用

这里定义一个稍微复杂一点的应用,包括了对图像的常用操作,基本上足够用来实现其他的图像算法了。

首先读入一幅图像,若为3通道的则转化为一通道,然后将图像右下角1/4置为白色。

 

#include <opencv2\opencv.hpp>  

int main()
{
	IplImage *img = cvLoadImage("D:\\_Gonzalez\\ch02\\Fig0205(a)(cktboard_200dpi).tif");
	//获取图像的参数  
	printf("width=%d\n", img->width);
	printf("height=%d\n", img->height);
	printf("channel=%d\n", img->nChannels);

	if (img->nChannels == 3)
	{
		//新建一个与img一样大的一通道空图像  
		IplImage *dst = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);
		//将彩色图像转化为一通道灰度图  
		cvCvtColor(img, dst, CV_RGB2GRAY);
		img = dst;
	}

	for (int y = img->height / 2; y < img->height; y++)
	{
		uchar* ptr = (uchar*)(img->imageData + y*img->widthStep);
		for (int x = img->width / 2; x < img->width; x++)
		{
			ptr[x + 1] = 255;
			ptr[x + 2] = 255;
			ptr[x + 3] = 255;
		}
	}

	cvNamedWindow("example", CV_WINDOW_AUTOSIZE);
	cvShowImage("example", img);

	cvWaitKey(0);
	cvReleaseImage(&img);
	cvDestroyWindow("example");
}

 

 

如果将要求改为将三通道的img右下角1/4置为白色,相应操作变成:

 

for (int y = img->height / 2; y < img->height; y++)
{
	uchar* ptr = (uchar*)(img->imageData + y*img->widthStep);
	for (int x = img->width / 2; x < img->width; x++)
	{
		ptr[x + 1] = 255;
		ptr[x + 2] = 255;
		ptr[x + 3] = 255;

		/*也可以是
		*(ptr+3*x+1) = 255;
		*(ptr+3*x+2) = 255;
		*(ptr+3*x+2) = 255;
		*/
	}
}


 

转载于:https://www.cnblogs.com/jenny1000000/p/7738334.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值