莱尼问:“乔治,我们能用括号钓鱼吗?”
乔治笑答:“能,但只能钓理论鱼。”
力学公理化形式
我们抽象出一套规则来玩泊松括号,而不是计算泊松括号。你可以检验一下这些规则。设 \(A\)、\(B\) 和 \(C\) 都是 \(p\) 和 \(q\) 的函数,根据上一讲的内容,我们可以定义泊松括号:
\begin{equation} \{A,C\} = \sum_i \left ( \frac{\partial A}{\partial q_i}\frac{\partial C}{\partial p_i} - \frac{\partial A}{\partial p_i}\frac{\partial C}{\partial q_i} \right ) \label{eq1} \end{equation}
泊松括号如下性质:
- 反对称性:交换两个函数,泊松括号改变符号:
\begin{equation} \{A,C\} = -\{C,A\} \label{eq2} \end{equation}
特别地,两个同样的函数的泊松括号的运算结果为0:
\begin{equation} \{A,A\} = 0 \label{eq3} \end{equation}
- 线性。线性带来两个性质。第一,如果函数 \(A\) 乘上一个常数 \(k\),则泊松括号的结果也乘上该常数:
\begin{equation} \{kA,C\}=k\{A,C\} \label{eq4} \end{equation}
第二,两个函数的和 \(A+B\) 与第三个函数 \(C\) 的泊松括号等于 \(A\) 和 \(B\) 分别与 \(C\) 的泊松括号的和:
\begin{equation} \{A+B,C\} = \{A,C\} + \{B,C\} \label{eq5} \end{equation}
- 两个函数的积 \(AB\) 与第三个函数 \(C\)的泊松括号满足如下关系:
\begin{equation} \{AB,C\} = B\{A,C\} + A\{B,C\} \label{eq6} \end{equation}
这个关系可由求导规则得到:
\begin{equation*}
\frac{\partial (AB)}{\partial q} = B \frac{\partial A}{\partial q} + A \frac{\partial B}{\partial q}
\end{equation*}
对 \(p\) 求导也有类似结果。
- 两个 \(q\) 或两个 \(p\) 的泊松括号都为0:
\begin{equation} \begin{split} &\{q_i,q_j\} = 0\\ &\{p_i,p_j\} = 0 \end{split} \label{eq7} \end{equation}
\(q\) 与 \(p\) 的泊松括号未必为0,而是满足如下结果:
\begin{equation} \{q\_i,p\_j\} = \delta\_{ij} \label{eq8} \end{equation}
其中 \(\delta\_{ij}\) 为 克罗内克符号,当 \(i=j\) 时,\(\delta\_{ij}=1\),当 \(i\neq j\) 时,\(\delta\_{ij}=0\)。
现在我们就可以计算任何泊松括号了。我们可以忘记泊松括号的定义了,方程 \eqref{eq2}、\eqref{eq3}、\eqref{eq4}、\eqref{eq5}、\eqref{eq6}、\eqref{eq7}、\eqref{eq8} 可以作为一套数学形式体系的公理。
比如,我们要计算下式:
\begin{equation} \{q^n,p\} \label{eq9} \end{equation}
为简单起见,系统只有一个\(q\) 和一个 \(p\)。这里先给出答案,然后再证明。答案是:
\begin{equation} \{q^n,p\}=nq^{n-1} \label{eq10} \end{equation}
可以用数学归纳法 证明上式。证明分两步。第一步,假设对于 \(n\),方程\eqref{eq10}成立,并证明对于 \(n+1\) 也成立。第二步,证明 \(n=1\) 时结论成立。
将