理论力学专题:哈密顿力学(II)----泊松括号

  • 在经典力学中,泊松括号的定义是两个动态变量之间的反对称可交换二次式。泊松括号通常被用来表示物理量之间的相互作用关系,如力和速度之间的相互作用。它在哈密顿力学中有着重要的应用,可以用于描述物理系统的演化、约束和守恒规律等方面。在量子力学中,泊松括号被泛化为泊松括号算符,用于描述量子力学中的相互作用关系。
  • 正则变量是理论力学中的一种量度方法,它的主要性质包括:
  • 独立的:正则变量中的每个变量是相互独立
  • 完备的:正则变量组成的集合是完备

泊松括号和泊松定理

  • A B均是正则变量

  •  泊松括号的基本性质

泊松括号改写正则方程

  • 用泊松括号改写正则方程

  •  用泊松括号表示任意函数的微商

泊松定理

泊松定理的内容

如果已知两个运动积分:

 存在第三个运动积分:

泊松定理的局限性

利用泊松定理,可以帮我们寻找新的运动积分。但实际上,它常常只能给出原有积分的线性组合或者恒等式,不能提供新的积分。例如:

  • 理论力学中的泊松括号是一种运算符,用于描述相空间量的变化率。具体来说,泊松括号是一种双线性、反对称、满足雅可比恒等式的运算符,用于描述两个相空间量之间的变化率。泊松括号在描述诸如质点、力学系统、波动方程等物理现象中非常有用,并且也在数学上有广泛的应用。在哈密顿力学中,泊松括号经常被用于描述相空间函数的运动方程,它的重要性不言而喻。

Python 中的泊松括号

import sympy
from sympy import symbols
from sympy import diff

def poisson_bracket(f, g, x, p):
    

    dfdx = diff(f, x)
    dgdp = diff(g, p)
    dfdp = diff(f, p)
    dgdx = diff(g, x)
    return dfdx * dgdp - dfdp * dgdx



x, p = symbols('x p')
f = x ** 2 + p ** 2
g = x * p
result = poisson_bracket(f, g, x, p)
print(result)

water 一下:

泊松

  • 物理学家泊松是法国数学家、物理学家、天文学家和概率论家。他为社会提出了许多重大贡献,其中包括提出了今天称为“泊松分布”和“泊松方程”的概念。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import scipy.sparse as ss
from scipy.sparse.linalg import spsolve
 
class PDE2DModel:
    #均应该传入一个一维二元数组,表示起止值
    def __init__(self,x,y):
        assert len(x)==len(y)==2,"ERROR:UNEXPECTED SV and EV!!"
        self.x = x
        self.y = y
 
    #hx表示X上的步长
    #hy表示Y上的步长
    def space_grid(self,hx,hy):
        M = int(round((self.x[1]-self.x[0])/hx,0))
        N = int(round((self.y[1]-self.y[0])/hy,0))
        assert M==N>=3,"至少网格数是合理的"
        X = np.linspace(self.x[0],self.x[1],M+1)
        Y = np.linspace(self.y[0],self.y[1],N+1)
        return M,N,X,Y
 
    def f(self,X,Y):
        return 6*X*Y**3+6*X**3*Y+np.e**X*np.sin(Y)-np.e**X*np.sin(Y)
 
    def solution(self,X,Y):
        return np.e**X*np.sin(Y)-X**3*Y**3
 
    #左边界
    def left(self,Y):
        return np.sin(Y)
    #右边界
    def right(self,Y):
        return np.e**3*np.sin(Y)-27*Y**3
    #上边界
    def up(self,X):
        return np.sin(1)*np.e**X-X**3
    #下边界
    def down(self,X):
        return 0*X
 
#解算核心
def NDM5_2D(PDE2DModel,hx,hy):
    M,N,X0,Y0 = PDE2DModel.space_grid(hx,hy)
    Y,X = np.meshgrid(Y0,X0)
##    print("X0",X0)
##    print("Y0",Y0)
##    #数值结果保存在U中 从0到N共N+1个
##    print("M",M)
##    print("N",N)
    U = np.zeros((M+1,N+1))
    U[0,:]  = PDE2DModel.left(Y0)
    U[-1,:] = PDE2DModel.right(Y0)
    U[:,0]  = PDE2DModel.down(X0)
    U[:,-1] = PDE2DModel.up(X0)
 
    D = np.diag([-1/(hy**2) for i in range(M-1)])
    C = np.zeros((N-1,N-1),dtype="float64")
    for i in range(N-1):
        C[i][i] = 2*(1/hx**2+1/hy**2)
        if i<N-2:
            C[i][i+1] = -1/hx**2
            C[i+1][i] = -1/hx**2
 
 
    u0 = np.array([[PDE2DModel.down(X0[i])] for i in range(1,M)])
    un = np.array([[PDE2DModel.up(X0[i])] for i in range(1,M)])
    
    F = np.zeros((M-1)*(N-1)) 
    for j in range(1,N):
        #for i in range(1,M):
        F[(N-1)*(j-1):(N-1)*(j)] = PDE2DModel.f(X0[1:M],np.array([Y0[j] for i in range(N-1)]))
 
        F[(N-1)*(j-1)] += PDE2DModel.left(Y0[j])/hx**2
        F[(N-1)*(j)-1] += PDE2DModel.right(Y0[j])/hx**2
 
    F[:N-1] -= np.dot(D,u0).T[0]
    F[(M-1)*(N-2):] -= np.dot(D,un).T[0]
    F = np.mat(F).T
##    print(F)
 
    Dnew = np.zeros(((M-1)*(N-1),(N-1)*(M-1)))
    for i in range((N-1)*(N-1)):
        Dnew[i][i] = 2*(1/hx**2+1/hy**2)
 
        if i<(N-2)*(N-1):
            Dnew[i][i+N-1] = -1/hy**2
            Dnew[i+N-1][i] = -1/hy**2
 
    for i in range(N-1):
        for j in range(N-2):
            Dnew[(N-1)*i+j][(N-1)*i+j+1] = -1/hx**2
            Dnew[(N-1)*i+j+1][(N-1)*i+j] = -1/hx**2
 
    print("差分方程构造完成!解算开始!")  
    Unew = np.linalg.solve(Dnew,F)
    #print(Unew)
    U[1:-1,1:-1] = Unew[:,0].reshape((N-1,N-1)).T
    return X,Y,U
 
#数据可视化
def Visualized():
    x = np.array([0,3])
    y = np.array([0,1])
 
    pde = PDE2DModel(x,y)
    X,Y,U = NDM5_2D(pde,0.03,0.01)
    u = pde.solution(X,Y)
 
    print("解算完成!绘图已开始!")
    plt.figure(figsize=(15,5))
    ax1 = plt.subplot(131,projection="3d")
    ax2 = plt.subplot(132,projection="3d")
    ax3 = plt.subplot(133,projection="3d")
 
    ax1.set_title("Numeric Solution")
    ax1.set_xlabel("x")
    ax1.set_ylabel("y")
    ax1.plot_surface(X,Y,U,cmap="gist_ncar")
 
    ax2.set_title("Exact Solution")
    ax2.set_xlabel("x")
    ax2.set_ylabel("y")
    ax2.plot_surface(X,Y,u,cmap="gist_ncar")
 
    e = np.abs(U-u)
    ax3.set_title("Error")
    ax3.set_xlabel("x")
    ax3.set_ylabel("y")
    ax3.plot_surface(X,Y,e,cmap="gist_ncar")
 
    plt.show()
    return U,u,X,Y
 
U,u,X,Y = Visualized()

OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力和灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制和解调过程通过FFT(快速傅立叶变换)和IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据和解调原始数据。 Matlab是一种广泛应用于科研、工程和数据分析的高级编程语言和交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库和工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理和信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域网(WLAN)以及4G/LTE和5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计与仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
51单片机是电子工程领域常用的入门级微控制器,广泛应用于小型电子设备,例如电子时钟。本项目将介绍如何利用51单片机设计一款简单的电子时钟,并通过Keil软件进行程序开发,同时借助Proteus仿真工具进行电路模拟,帮助初学者掌握51单片机的基础应用。 51单片机基于Intel 8051内核,集成了CPU、RAM、ROM、定时器/计数器和I/O端口等功能模块,具有易于编程和性价比高的优势。在电子时钟项目中,主要利用其定时器实现时间的精确计算。Keil μVision是51单片机的常用开发环境,支持C语言和汇编语言编程。开发时,需编写代码以控制单片机显示和更新时间,包括初始化时钟硬件、设置定时器中断、编写中断服务程序以及与LCD显示屏交互等步骤。关键环节如下:一是初始化,配置时钟源(如外部晶振)设定工作频率;二是定时器设置,选择合适模式(如模式1或模式2),设置计数初值以获得所需时间分辨率;三是中断服务,编写定时器中断服务程序,定时器溢出时更新时间并触发中断;四是显示控制,通过I/O端口驱动LCD显示屏显示当前时间。 Proteus是一款虚拟原型设计软件,可用于模拟硬件电路,帮助开发者在编程前验证电路设计。在Proteus中,可搭建51单片机、LCD模块、晶振及电阻、电容等元件,形成电子时钟电路模型。运行仿真后,可观察程序在实际电路中的运行情况,及时发现并解决问题。 实际项目中,51单片机电子时钟还涉及以下知识点:一是时钟信号产生,定时器通过计数外部时钟脉冲实现时间累计,可通过调整晶振频率和定时器初始值设置不同时间间隔;二是LCD接口,需理解LCD的命令和数据传输协议,以及如何控制背光、显示模式、行列地址等;三是中断系统,了解中断概念、中断向量及程序中中断的启用和禁用方法;四是数码管显示,若使用数码管而非LCD,需了解其显示原理及段选、位选的驱动方式。 本项目融合了单片机基础、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值