针对领域不变训练的注意力对抗学习

ICASSP 2019 SLP-P17.3: ATTENTIVE ADVERSARIAL LEARNING FOR DOMAIN-INVARIANT TRAINING(针对领域不变训练的注意力对抗学习)

   

简介

基于注意力机制的领域不变对抗性训练,用于抑制说话人变量与环境变量,以实现鲁棒ASR

   

基于对抗的领域不变性训练(Adversarial Domain-Invariant Training,ADIT)

收敛:

同时,通过最小化预测三音素后验与三音素标签之间的交叉熵以提高F的三音素鉴别性:

基于注意力机制的、对抗的领域不变性训练(Attentive Adversarial Domain-Inveriant Training,AADIT)

ADIT中,领域分类损失函数 等于 深度特征序列中每个特征的分类错误之和。然而,与无话语帧的深度特征相比,有话语帧的深度特征更具有领域鉴别性;与辅音相比,元音的深度特征的领域变化性更大。为解决这一问题,本文提出使用注意力机制动态且自动地调整深度特征的权重,以对更具有领域鉴别性的深度特征进行强调,这样,能增强所有深度特征的领域不变性。

   

本文使用了更适用于ASRsoft local(time-restricted) self-attentionlocal attention选择性地将注意力集中于上下文窗(以当前时间为中心)。

   

   

  • 点积attention

  • 加性attention

   

领域分类损失函数变为:

   

参数估计可表示为:

实验结果与结论

与多场景LSTM声学模型相比,single-head AADIT变好13.6%

ADIT相比,single-head AADIT变好9.3%

   

参考文献

ATTENTIVE ADVERSARIAL LEARNING FOR DOMAIN-INVARIANT TRAINING

Zhong Meng, Jinyu Li, Yifan Gong, Microsoft Corporation, United States

转载于:https://www.cnblogs.com/JarvanWang/p/10950427.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值