深度学习领域的对抗攻击方法和对抗样本防御方法【理论理解+源码参考】

本文详细介绍了深度学习领域的对抗攻击,包括GSM、I-FGSM、C&W方法、Deepfool和PGD,以及如何使用AdvGAN生成对抗样本。此外,还探讨了防御策略,如PD、ComDefend、RARFTA和RI,以增强模型的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录


以下介绍了一系列针对深度学习模型的对抗攻击方法和对抗样本防御方法。对抗攻击方法包括GSM、I-FGSM、C&W、Deepfool、PGD和AdvGAN,它们利用梯度信息或生成对抗网络来生成欺骗性的对抗样本。对抗样本防御方法包括PD、ComDefend、RARFTA和RI,它们通过预处理、组件处理、随机特征转换或随机扰动等方式增强模型的鲁棒性,以减少对抗攻击的影响。这些方法共同努力提高深度学习模型的安全性和鲁棒性,以应对日益增加的对抗攻击威胁。

在这里插入图片描述

对抗攻击方法:

GSM (Gradient Sign Method): 该方法通过计算损失函数相对于输入数据的梯度来生成对抗样本,然后沿着梯度方向对输入数据进行微小的修改。

GSM(梯度符号方法)是一种简单但有效的对抗攻击方法。其基本思想是通过计算神经网络损失函数相对于输入数据的梯度,然后沿着梯度方向对输入数据进行微小的修改,以生成对抗样本。

具体来说,对于给定的输入数据,首先通过前向传播计算出模型的输出结果。然后,计算损失函数相对于输入数据的梯度,这个梯度告诉我们在输入空间中哪个方向能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值