目标检测经典论文_做目标检测,这6篇就够了:CVPR 2020目标检测论文盘点

本文盘点了CVPR 2020会议上值得关注的6篇目标检测论文,涉及3D目标检测、点云处理、伪装目标检测、小样本目标检测等领域。论文包括:A Hierarchical Graph Network、HVNet、Point-GNN、Camouflaged Object Detection、Few-Shot Object Detection、D2Det,每篇论文都提供了创新性的解决方案和实验结果。
摘要由CSDN通过智能技术生成

CVPR 2020 会议上,有哪些目标检测论文值得关注?

目标检测是计算机视觉中的经典问题之一。凭借大量可用数据、更快的 GPU 和更好的算法,现在我们可以轻松训练计算机以高精度检测出图像中的多个对象。

前不久结束的 CVPR 2020 会议在推动目标检测领域发展方面做出了一些贡献,本文就为大家推荐其中 6 篇有价值的目标检测论文。

fedc048ea583cbcf8f98caa62672b874.png

论文清单

A Hierarchical Graph Network for 3D Object Detection on Point Clouds

HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection

Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud

Camouflaged Object Detection

Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector

D2Det: Towards High-Quality Object Detection and Instance Segmentation

1. A Hierarchical Graph Network for 3D Object Detection on Point Clouds

52126aa9502fc9a287a286653160eae9.png

论文地址:

https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_A_Hierarchical_Graph_Network_for_3D_Object_Detection_on_Point_CVPR_2020_paper.pdf

这项研究提出了一种基于图卷积 (GConv) 的新型层次图网络 (HGNet),它用于三维目标检测任务,可直接处理原始点云进而预测三维边界框。HGNet 能够有效捕获点之间的关系,并利用多级语义进行目标检测。

具体而言,该研究提出了新的 shape-attentive GConv (SA-GConv),它能通过建模点的相对几何位置来描述物体的形状,进而捕获局部形状特征。基于 SA-GConv 的 U 形网络捕获多层次特征,通过改进的投票模块(voting module)将这些特征映射到相同的特征空间中,进而生成候选框(proposal)。

HGNet 主要包括三部分:

基于 GConv 的 U 形网络(GU-net);

候选框生成器;

候选框推理模块(ProRe Module):使用全连接图对候选框进行推理。

该研究提出的模型主要以 VoteNet 作为 backbone,并基于它提出了一系列改进。由下图可以看出:

将 VoteNet 中的 PointNet++ 换成特征捕捉能力更强的 GCN;

为 up-sample 的多层中的每一层都接上 voting 模块,整合多个尺度的特征;

在 proposal 之间也使用 GCN 来增强特征的学习能力。

e0e1b3ec3156cf910e9fba041eea6d2a.png

实现细节

本文提出了 Shape-attentive Graph Convolutions(SA-GConv),并且将这个卷积同时用在了 down-sampling pathway 和 up-sampling pathway 中。

本文提出了一个 Proposal Reasoning Module,在 proposal 之间学习其特征之间的交互。

4e2e1b8097e4b9269633a81092fe354b.png

不同模型在 SUN RGB-D V1 数据集上的实验结果如下所示:

4fa1b1d1f1559a51d3a45e6b91953c41.png

2. HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection

8b86389cda59c4a24908deac13900418.png

论文地址:

https://openaccess.thecvf.com/content_CVPR_2020/papers/Ye_HVNet_Hybrid_Voxel_Network_for_LiDAR_Based_3D_Object_Detection_CVPR_2020_paper.pdf

这篇论文提出了一种基于点云的自动驾驶三维目标检测 one-stage 网络——混合体素网络 (Hybrid Voxel Network, HVNet),通过在点级别上混合不同尺度的体素特征编码器 (VFE) 得到更好的体素特征编码方法,从而在速度和精度上得到提升。

962df0e017d9399e69f5bbeb38dd0d74.png

HVNet 采用的体素特征编码(VFE)方法包括以下三个步骤:

体素化:将点云指定给二维体素网格;

体素特征提取:计算网格相关的点级特征,然后将其输入到 PointNet 风格特征编码器;

投影:将点级特征聚合为体素级特征,并投影到其原始网格。这就形成了一个伪图像特征图。

f7c40f565e9dfe32fec33e6f9a399592.png

该研究提出的 HVNet 架构包括:HVFE 混合体素特征提取模块;2D 卷积模块;以及检测模块,用来输出最后的预测结果。

HVNet 整体架构及 HVFE 架构参见下图:

933f615d74fe6b3cbb7bd37f129b7bc3.png

不同模型在 KITTI 数据集上获得的结果如下表所示:

306a6df7e4de7718b4b735e4c59bb917.png

3. Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud

ce116f952b83db5e7850c9adace5ce37.png

论文地址:

https://openaccess.thecvf.com/content_CVPR_2020/papers/Shi_Point-GNN_Graph_Neural_Network_for_3D_Object_Detection_in_a_CVPR_2020_paper.pdf

项目地址:https://github.com/WeijingShi/Point-GNN

基于点云的 3D 目标检测具有非常重要的应用价值,尤其是在自动驾驶领域。使用激光雷达传感器获得的 3D 点云数据描述了周围环境,使得 3D 目标检测能够比单纯使用 RBG 摄像头提供更多的目标信息(不仅有位置信息,还有距离信息)。

该研究指出,以往使用 CNN 的方法处理点云数据时往往需要在空间划分 Grids,会出现大量的空白矩阵元素,并不适合稀疏点云;近来出现的类似 PointNet 的方法对点云数据进行分组和采样,取得了不错的结果,但计算成本太大。于是该研究提出一种新型 GNN 网络——Point-GNN。

Point-GNN 方法主要分为三个阶段,如下图所示:

图构建:使用体素降采样点云进行图构建;

GNN 目标检测(T 次迭代);

边界框合并和评分。

ea28f68d2ddb46da7c396ce6590c9389.png

以下是不同模型在 KITTI 数据集上获得的结果:

d970dcb66b83edd7443389b2e6507f0b.png

4. Camouflaged Object Detection

92fcdef6536bb8515b18672f2a56eb40.png

论文地址:

https://openaccess.thecvf.com/content_CVPR_2020/papers/Fan_Camouflaged_Object_Detection_CVPR_2020_paper.pdf

项目地址:https://github.com/DengPingFan/SINet/

这篇论文解决的问题是:如何检测嵌入在周围环境中的物体,即伪装目标检测(camouflaged object detection,COD)。

此外,该研究还创建了一个名为 COD10K 的新型数据集。它包含 10,000 张图像,涵盖许多自然场景中的伪装物体。该数据集具有 78 个类别,每张图像均具备类别标签、边界框、实例级标签和抠图级(matting-level)标签。

下图展示了 COD10K 数据集中的样本示例及其难点。

5496f8b76df5444d928f781780f06899.png
a1cea5d9afff4ce620eedc3525241bc3.png

为了解决伪装目标检测问题,该研究提出了一种叫做搜索识别网络(Search Identification Network,SINet)的 COD 框架。

该网络有两个主要模块:

搜索模块(SM),用于搜索伪装的物体;

识别模块(IM),用于检测该物体。

SINet 架构如下所示:

1b7866f3c289949b9fc8ae24d9bf456a.png

不同模型在多个数据集上的结果参见下表:

4817a2ac28bcea8984787c71dcdf6153.png

5. Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector

eccfaf4d9d47ca3ca9bbb8f6275804ef.png

论文地址:

https://openaccess.thecvf.com/content_CVPR_2020/papers/Fan_Few-Shot_Object_Detection_With_Attention-RPN_and_Multi-Relation_Detector_CVPR_2020_paper.pdf

传统的目标检测算法需要大量数据标注才能训练模型,而数据标注不但耗费人力,可能还会因为标注质量而影响训练效果。

这篇论文提出了一种「小样本」目标检测网络,旨在通过少量标注数据使模型有效检测到从未见过的目标。

该方法的核心包括三点:Attention-RPN、Multi-Relation Detector 和 Contrastive Training strategy,利用小样本 support set 和 query set 的相似性来检测新的目标,同时抑制 background 中的错误检测。

该团队还贡献了一个新的数据集,该数据集包含 1000 个类别,且具备高质量的标注。

该研究提出一个新型注意力网络,能在 RPN 模块和检测器上学习 support set 和 query set 之间的匹配关系;下图中的 weight shared network 有多个分支,可以分为两类,一类用于 query set,另一类用于 support set(support set 的分支可以有多个,用来输入不同的 support 图像,图中只画了一个),处理 query set 的分支是 Faster RCNN 网络。

06b4d709d59efa5d0e31309009ede35f.png

该研究提出的网络架构。

作者还提出用 Attention RPN 来过滤掉不属于 support set 的目标。

5ab4b62de63c24926690bada749b0b2a.png

以下是不同模型在 ImageNet 数据集上的实验结果:

4a071076f52a463554d4cb240b03a46e.png

以下是基于一些数据集得到的观察结果:

58a15a3184f70cd12266a2fdcd6bdbca.png

6. D2Det: Towards High-Quality Object Detection and Instance Segmentation

b9879231d6cdb2edacd2918e9c0e377a.png

论文地址:

https://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf

项目地址:https://github.com/JialeCao001/D2Det

这篇论文提出了一种提高定位精度和分类准确率的方法 D2Det,以提升目标检测的效果。针对这两项挑战,该研究分别提出了 dense local regression(DLR)和 discriminative RoI pooling(DRP)两个模块。其中 DLR 与 anchor-free 方法 FCOS 的 detect loss 类似,DRP 则是利用了 deformable convolution 的思想,分别从第一阶段和第二阶段提取准确的目标特征区域,进而获得相应的性能提升。具体方法流程如下图所示:

d83f38689b486e7576f37900c959c953.png

在这两个阶段中,第一阶段采用区域建议网络(RPN),而第二阶段采用分类和回归的方法,分类方法基于池化,局部回归则用于物体的定位。

123cb0c481d385ed29ff8306cbdf5024.png

以下是不同模型在 MS COCO 数据集上的结果:

74d4feee08883fdadcfefb92483833f3.png

计算机视觉顶会 CVPR 2020 提供了很多目标检测等领域的研究论文,如果你想获取更多论文信息,请点击以下网址:https://openaccess.thecvf.com/CVPR2020。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值