分段二次插值函数表达式_数值分析(拟合、插值和逼近)之数据插值方法(线性插值、二次插值、Cubic插值、埃米尔特zz...

插值、拟合和逼近的区别

据维基百科,科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合。通过拟合得到的函数获得未知点的数据的方法,叫做插值。其中,拟合函数经过所有已知点的插值方法,叫做内插。

拟合是已知点列,从整体上靠近它们;插值是已知点列并且完全经过点列;逼近是已知曲线,或者点列,通过逼近使得构造的函数无限靠近它们。

最小二乘意义下的拟合,是要求拟合函数与原始数据的均方误差达到极小,是一种整体意义的逼近,对局部性质没有要求。而所谓“插值”,就是要在原有离散数据之间“插入”一些值,这就要求插值函数必须通过所有的离散点,插值函数在离散点之外的那些点都相当于“插入”的值。插值有全局插值,也有局部插值(比如分段线性插值),插值误差通常考虑的是逐点误差或最大模误差,插值的好坏往往通过某些局部的性质来体现,比如龙格现象或吉布斯振荡。

插值方法

多项式插值

对于大部分多项式插值函数,插值点的高度值可以视为所有(或某些)节点高度值的线性组合,而线性组合的系数一般是x坐标的多项式函数,称作基函数。对于一个节点的基函数,它在x等于该节点的x时等于1,在x等于其他节点的x时等于0。这就保证曲线必定经过所有节点,所以属于内插方法。

在本小节,均以一组随机数作为已知的高度值,使它们对应于间隔固定的x坐标,使用不同的插值函数获得各已知点(称为插值函数的节点)之外其它x坐标所对应的高度值,画出这些点所对应的曲线。再把所有高度值转换成灰度值,以颜色的变化比较各插值函数。

原点列如图:(假定横向为x,纵向为y。各点x坐标的间隔是固定的,但y坐标是随机的)

a4c26d1e5885305701be709a3d33442f.png

线性插值

a4c26d1e5885305701be709a3d33442f.png

线性插值是用一系列首尾相连的线段依次连接相邻各点,每条线段内的点的高度作为插值获得的高度值。

以(xi,yi)表示某条线段的前一个端点,(x(i+1),y(i+1))表示该线段的后一个端点,则对于在[xi,x(i+1)]范围内的横坐标为x的点,其高度y为:

a4c26d1e5885305701be709a3d33442f.pnga4c26d1e5885305701be709a3d33442f.png

为便于与后面各函数比较,写成比较对称的形式:

a4c26d1e5885305701be709a3d33442f.png

其中,yi和y(i+1)的两个参数称为基函数,二者之和为1,分别代表yi和y(i+1)对插值点高度的权值。

插值图像如下:

a4c26d1e5885305701be709a3d33442f.png

将高度转化为灰度,得到如下条带:

a4c26d1e5885305701be709a3d33442f.png

线性插值的特点是计算简便,但光滑性很差。如果用线性插值拟合一条光滑曲线,对每一段线段,原曲线在该段内二阶导数绝对值的最大值越大,拟合的误差越大。

二次插值

如果按照线性插值的形式,以每3个相邻点做插值,就得到了二次插值:

a4c26d1e5885305701be709a3d33442f.png

OpenGL实现代码如下:

void quadratic(float p[20][2])

{

float x,y;

int i;

float x01,x02,x12;

glColor3f(0.0,0.0,1.0);

glBegin(GL_LINE_STRIP);

for(i=0;i<20;i+=2)

{

x01=p[i][0]-p[i+1][0];

x02=p[i][0]-p[i+2][0];

x12=p[i+1][0]-p[i+2][0];

for(x=p[i][0];x<=p[i+2][0];x+=1.0)

{

y=(x-p[i+1][0])*(x-p[i+2][0])/x01/x02*p[i][1]-(x-p[i][0])*(x-p[i+2][0])/x01/x12*p[i+1][1]+(x-p[i][0])*(x-p[i+1][0])/x02/x12*p[i+2][1];

glVertex2f(x,y);

}

}

glEnd();

}

二次(分段)插值图像如下:

a4c26d1e5885305701be709a3d33442f.png

转换成灰度值如图:

a4c26d1e5885305701be709a3d33442f.png

二次插值在每段二次曲线内是光滑的,但在每条曲线的连接处其光滑性可能甚至比线性插值还差。二次插值只适合3个节点的情形,当节点数超过3个时,就需要分段插值了。

Cubic插值

如果想要保证各段曲线连接处光滑(一阶导数相同),并且不想使用除法运算,可以考虑Cubic插值函数:

a4c26d1e5885305701be709a3d33442f.png

其中,v代表插值点,v0、v1、v2、v3代表4个连续的节点。t取值为[0,1],将会产生一段连接v1和v2的曲线。也就是说,如果有n个节点,Cubic插值函数将会产生(n-2)段曲线,位于首尾两端的节点不会纳入曲线。

实现代码如下:

float cubic(float v0,float v1,float v2,float v3,flo

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值