数值计算之 插值法(5)分段插值,埃尔米特插值

前言

之前记录了多项式插值法和龙格现象,以及使用切比雪夫零点插值的方法。本篇讲解分段插值和埃尔米特插值法。

分段插值

当多项式次数升高时,可能出现龙格现象,插值精度不一定升高。因此,可以将相邻的节点作为一个插值区间,形成多个插值多项式的组合。

分段线性插值

加入待插值函数 f ( x ) f(x) f(x)有节点 ( x 0 , f ( x 0 ) ) , ( x 1 , f ( x 1 ) ) , … , ( x n , f ( x n ) ) , x 0 < x 1 < ⋯ < x n (x_0,f(x_0)),(x_1,f(x_1)),\dots,(x_n,f(x_n)),x_0<x_1<\dots<x_n (x0,f(x0)),(x1,f(x1)),,(xn,f(xn)),x0<x1<<xn,则用线性函数 f i ( x ) f_i(x) fi(x)插值 ( x i , f ( x i ) ) , ( x i + 1 , f ( x i + 1 ) ) , 0 < i < n − 1 (x_i,f(x_i)),(x_{i+1},f(x_{i+1})),0<i<n-1 (xi,f(xi)),(xi+1,f(xi+1)),0<i<n1,然后将所有 f i f_i fi组合成 f ( x ) f(x) f(x)的插值结果。
在这里插入图片描述
由上图可以看出,分段插值结果精度较好,但不平滑。

分段二次插值

与分段线性插值类似,将每段用于插值的多项式换为二次多项式,就是分段二次插值。

实际上,分段多次插值就是将插值区间分段后,运用多项式插值法处理每一段,拼接后获得插值结果。

虽然分段多次插值法能够提升插值的精度,但是插值结果失去了平滑性。

埃尔米特Hermite插值

埃尔米特插值原理

所谓平滑性,即插值结果在整个插值区间上的连续性和可导性。由于分段插值只考虑了局部节点的函数值,插值结果在整体区间上可能不可导。

为了满足插值平滑性需求,插值不仅考虑节点处的函数值,还要考虑其导数值,就是埃尔米特插值法。

埃尔米特插值原理:在插值区间 [ a , b ] [a,b] [a,b]上,对于待插值函数 f ( x ) f(x) f(x),其节点函数值满足 ( x 0 , f ( x 0 ) ) , ( x 1 , f ( x 1 ) ) , … , ( x n , f ( x n ) ) (x_0,f(x_0)),(x_1,f(x_1)),\dots,(x_n,f(x_n)) (x0,f(x0)),(x1,f(x1)),,(xn,f(xn)),节点导数值满足 ( x 0 , f ′ ( x 0 ) ) , ( x 1 , f ′ ( x 1 ) ) , … , ( x n , f ′ ( x n ) ) (x_0,f'(x_0)),(x_1,f'(x_1)),\dots,(x_n,f'(x_n)) (x0,f(x0)),(x1,f(x1)),,(xn,f(xn)) a < x 0 < x 1 < ⋯ < x n < b a<x_0<x_1<\dots<x_n<b a<x0<x1<<xn<b,则存在唯一一个2n+1次多项式 H ( x ) = a 0 + a 1 x + ⋯ + a 2 n + 1 x 2 n + 1 H(x)=a_0+a_1x+\dots+a_{2n+1}x^{2n+1} H(x)=a0+a1x++a2n+1x2n+1作为 f ( x ) f(x) f(x)的插值结果。

埃尔米特插值公式

可以通过拉格朗日插值的思维来构造埃尔米特插值:
H ( x ) = ∑ j = 0 n ( P j ( x ) f ( x j ) + Q j ( x ) f ′ ( x j ) ) P j ( x ) = { 0 , x ≠ x j 1 , x = x j Q j ( x ) = { 0 , x ≠ x j 0 , x = x j P j ′ ( x ) = { 0 , x ≠ x j 0 , x = x j Q j ′ ( x ) = { 0 , x ≠ x j 1 , x = x j H(x)=\sum_{j=0}^n (P_j(x)f(x_j)+Q_j(x)f'(x_j)) \\ \quad \\ P_j(x)=\begin{cases} 0,&x \ne x_j \\ 1,&x=x_j \\ \end{cases} \\ \quad \\ Q_j(x)=\begin{cases} 0,&x \ne x_j \\ 0,&x=x_j \\ \end{cases} \\ \quad \\ P'_j(x)=\begin{cases} 0,&x \ne x_j \\ 0,&x=x_j \\ \end{cases} \\ \quad \\ Q'_j(x)=\begin{cases} 0,&x \ne x_j \\ 1,&x=x_j \\ \end{cases} \\ \quad \\ H(x)=j=0n(Pj(x)f(xj)+Qj(x)f(xj))Pj(x)={0,1,x=xjx=xjQj(x)={0,0,x=xjx=xjPj(x)={0,0,x=xjx=xjQj(x)={0,1,x=xjx=xj

假设 L j ( x ) L_j(x) Lj(x)是使用拉格朗日插值法对 f ( x ) f(x) f(x)的函数值插值时的基函数,则埃尔米特插值公式可具体表示为:
P j ( X ) = ( 1 − 2 ( x − x j ) L j ′ ( x j ) ) L j 2 ( x ) Q j ( x ) = ( x − x j ) L j 2 ( x ) H ( x ) = ∑ j = 0 n ( P j ( x ) f ( x j ) + Q j ( x ) f ′ ( x j ) ) P_j(X)=(1-2(x-x_j)L'_j(x_j))L_j^2(x) \\ \quad \\ Q_j(x)=(x-x_j)L_j^2(x) \\ \quad \\ H(x)=\sum_{j=0}^n (P_j(x)f(x_j)+Q_j(x)f'(x_j)) \\ \quad \\ Pj(X)=(12(xxj)Lj(xj))Lj2(x)Qj(x)=(xxj)Lj2(x)H(x)=j=0n(Pj(x)f(xj)+Qj(x)f(xj))

分段三次埃尔米特插值

埃尔米特插值的次数也很高,因此也会产生龙格现象。因此,以相邻两个节点分段,采用埃尔米特插值每一段函数的方法,就是分段三次埃尔米特插值法。
在这里插入图片描述

分段三次埃尔米特插值的结果在节点附近是比较平滑的。但是,三次埃尔米特插值只考虑了节点处的一阶导,因此其平滑性也有局限性。

后记

下篇将介绍样条插值,也是插值法的最后一章。

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值