三个变量存在一个协整方程_第2章 定态薛定谔方程及其典例

本文详细探讨了量子力学中的定态薛定谔方程,包括一维无限深方势阱、谐振子、自由粒子以及有限深方势阱的解。通过代数法和解析法解决各种情况下的定态问题,揭示了能量本征值和波函数的特性。
摘要由CSDN通过智能技术生成

2.1 定态(time-independent)

2.1.1 定态薛定谔方程

在薛定谔方程

中,势函数
决定了解的函数形式。

在势函数

仅是空间位置的函数
时,就可以运用分离变量法

即得到两个常微分方程

式(2.1.2)称为定态(不含时)薛定谔方程。在接下来的几节里,我们将要解几个具有简单势的定态薛定谔方程。

2.1.2 定态薛定谔方程的性质

1.薛定谔方程的定态特解为(n是标记本征值的指标)

其概率密度不依赖于时间

并且任何动力学变量的期望值也是如此,这就是所谓的定态(stationary states)。

特别地,

为常数,
.

2.对于定态薛定谔方程的每一个本征函数

(称为粒子的一个激发态,n=1为基态),都有着
确定的能量,其值恰为

注意到式(2.1.2)左边可以写为一个哈密顿算符

注意到

所以

因此

说明能量

服从没有弥散的单点分布。并且,对于一个概率守恒的粒子,
必为实数。

还有非常重要的一点是,各能级的能量值

不会小于势的最小值
,这是因为

如果

小于
,求得的波函数
将无法归一化(只能得到零解)。

证明

,必有
,即

3.含时薛定谔方程的一般解可以通过定态薛定谔方程的特解叠加得到,

只要该级数收敛并且可以逐项对

求二阶偏微商,对
求一阶偏微商。

完备性保证了对于任意的初始条件,都能由本征函数线性表示

而叠加系数

可以通过
的正交归一性求得

并且我们可以证明

其实,

是事件“测量处于态
的粒子的能量,得到值为
”的概率。

理所应当有

4.如果势函数

关于
对称的,则
关于
偶奇交替:基态为偶,第一激发态为奇……

对于任何形式的势

,
的节点随
递增:基态为0,第一激发态为1……

5.对于可归一化解

,分离变量常数
必为实数。

6.定态波函数

总可以取作实函数。作为代价,叠加系数
一般为复数。

7.如果

为偶函数(空间反射对称),则
总可以取作奇函数或偶函数(解可以有确定的宇称)。

2.2 一维无限深方势阱

其势函数为

这个势阱显然是虚构的,虽然它十分简单,但正因为如此,它是许多机理很好的作证模型。例:电子在金属固体中运动;质子、中子被束缚在原子核中。

在势阱外,显然只有零解

在势阱内,

,定态薛定谔方程为

时,这是经典简谐振子的运动方程,记

则其通解为

,将没有满足边界条件的非零解。

接下来,考虑边界条件。一般来说,

是连续的(!!)

的连续性要求
以使得势阱内外的解连续,代入这组边界条件,得

解得本征值

(零解n=0已舍)

正如上一节所说,每一个本征值

对应的本征函数
都有着确定的能量取值

由归一化条件,我们可以求出

我们不关心复数

的相位(它不影响任何力学量的期待值),取成实数

这样我们就得到了一维无限深方势阱的定态薛定谔方程的解

如上一节所说,只要给定了在一维无限深方势阱中运动粒子的初始波函数

就能由下式定出叠加系数

这其实就是对

奇延拓的Fourier正弦级数的系数公式。

2.3 谐振子

其势函数为

事实上,任何振幅足够小的振动,都可以近似看作简谐振动。在数学上,相当于在势函数
极小值
处用泰勒级数展开到二阶,其倔强系数为
.

有两种方法可以解。

2.3.1 代数法

求解的基本思想是分解哈密顿算符

先重写这种情况下的哈密顿算符

对于复数域上的两个数,有

受此启发,我们用位置算符和动量算符构造出两个新算符

计算它们的乘积

注意到括号内第三项,算符一般是不满足交换律的。

我们把这样的差,叫做对易式。一般地,我们记算符

的对易式为

为谨慎起见,我们通常把对易式作用到一个测试函数上来计算它:

这就得到了我们想要的结果

因此,回到乘积

同理,有

容易看出

这样,我们就能用新构造的算符

来重写哈密顿算符,换言之重写谐振子的薛定谔方程。

这样改写的好处是,我们发现,若

满足能量为
的谐振子薛定谔方程,则
满足能量为
的谐振子薛定谔方程。

证明:

在证明过程中要注意到,算符和任何常数都是可以对易的。

同理可证,若

满足能量为
的谐振子薛定谔方程,则
满足能量为
的谐振子薛定谔方程。

正因为如此,我们现在给一开始构造的算符命名:

是升阶算符,
是降阶算符。进一步可以得知,相邻能级的能量差值为

279e83fc96bac8f5629cf956021b2b6f.png

考虑这么一种情况,当我们反复用降阶算符

作用在谐振子薛定谔方程的一个解
上,会使得对应的能量值小于势的最小值(也就是0)。这个时候,通过反复运用降阶算符得到解只能是零解。那我们考虑将降阶算符
作用在基态
上,有

通过整理,可以得到一个可分离变量的一阶常微分方程

通解为

取归一化因子

,这样量子谐振子的基态为

这样,第n激发态的波函数为

其中

为归一化因子

此外,把

代入到
这种形式的薛定谔方程中,可以得到基态的能量
,立马有

最后的工作是求得归一化因子

,这要先证明
互为
厄密共轭,即对于任何模方可积的函数
,有

证明:

利用这个性质,特别有

对于等式左边,根据已知(

),有

所以

对于等式右边,注意到,将能量关系

,分别代入这种形式的薛定谔方程
,就能得到

所以

这样我们就得到了归一化系数的递推公式

利用首项
,迭代得(每项都取作实数),

所以谐振子薛定谔方程的通解为

2.3.2 解析法


2.4 自由粒子

所谓自由,指不受任何力,即

处处成立,故可取

这看起来应该是最简单的情况,在经典牛顿力学中,它意味着粒子静止或者做匀速直线运动,但是在量子力学中,这个问题就变得相当微妙。

定态薛定谔方程为

这与2.2节无限深方势阱的情况是相同的,但这里我们用“行波解”的形式来表示其一般解,这将更能体现其物理含义,暂时取

现在没有任何的边界条件能帮助我们定下本征值

,也就是说自由粒子的能量可以取任意的正值,而不是再像之前一样,只能取分立的值。

相应的波函数为

可以看到,第一项表示一个向右传播的波(等相面

,或概率流密度
),第二项则代表一个向左传播的波。那么记

则波函数可同一写为

然而,无论是将波函数写成(2.4.1),还是(2.4.2),它们的模方在全空间的积分都是发散的。这意味着,对自由粒子而言,通过分离变量得到的解并不代表物理上可实现的态:自由粒子不能存在于任何一个定态:由于

发散,讨论某一定态中任何力学量的期待值都将没有意义。

但是,分离变量解的数学地位是完全不依赖于它们的物理解释的(They play a mathematical role that is entirely independent of their physical interpretation.),含时薛定谔方程的一般解依然是分离变量解的线性组合(此时对原来分立指标

的求和变成了对连续变量
的积分):

时,就能发现初始波函数
的傅里叶逆变换

那么就能对给定的

做傅里叶变换得到
,进而代入(2.4.3)积分得到

并且只要将给定的

归一化,那么式(2.4.3)给出的一般解就已经是归一化的了。

中间小结

束缚态 :

,能量本征值离散,定态解可归一化。

散射态:

,能量本征值连续,定态解不可归一化。

2.5

函数势

为正常数,这称为
势阱(存在束缚态和散射态)。

如果符号反过来,则称为

势垒(只存在散射态)。

2.5.1

势阱束缚态

由于

的存在,空间被一分为二,在原点处出现奇异性。

的区域,
,薛定谔方程写为

一般解为

,
,所以舍去发散的第一项

的区域,依然有
,所以同理得

得到了一般解,再考虑标准边界条件
  1. 总是连续的;
  2. 除了势是无穷大的点外是连续的。

对于1,我们有

;先证明2,考虑对定态薛定谔方程积分

取极限

,

故当

时,
,所以

对于

,

故有

可解得唯一的本征值

,对应归一化波函数为

仅有偶宇称态,奇宇称态只有零解

,舍去。

2.5.2

势阱散射态

,薛定谔方程写为

一般解为

,同理有

由标准边界条件,有

其中

,这个方程组可以有三个自由变量。在物理上看,
代表向右传播的波振幅,
向左。在通常的散射实验中,粒子是由一个方向入射的——所以
代表入射
势阱的波,它们其中之一为零。比如,我们假设波时从左边入射,则

但是此时方程组中,还有四个未知量,不能完全求解。我们能做的只是用本征值

来表示剩下三个振幅之间的比值,即反射系数
和透射系数
,这实际上是各平面波项的概率流密度之比

特别注意到,即使

,粒子仍有可能被反射
;同时能量
越大,透射概率
也越大。

2.5.3

势垒

此情况只存在散射态,相应的结果只需要将2.5.2的

即可,得到的反射系数和投射系数不变。说明即使
,粒子仍有概率透射,穿过无限高(但无限窄)的势垒,这就是
量子隧穿效应。

2.6 有限深方势阱

其势函数为

c7ac970d2c4ec526432571c452a1652b.png

2.6.1 束缚态

,一般解为

,同理

,薛定谔方程写为

取驻波解

在考虑标准边界条件之前,先取偶宇称解以简化方程

再有标准边界条件得到一个仅关于能量本征值的超越方程

我们现在来定性地考虑

解的情况,引入记号

则原方程化为

在取值范围内一一对应,所以两边函数图像的交点就是上述方程的解

681491e6c3a3677511ca24cfd3a8786d.png

当然,如果我们取奇宇称解

由边界条件得到的超越方程为

c65452d9d3bc4ba880eda2bcaa2faf8d.png

这恰好弥补了区间

的空白

1.浅、窄势阱。

(阱半宽
或阱深
)越小,
的解就越少,无论多小,总存在一个偶宇称束缚态(
时,最低奇宇称态消失)。

2.深、宽势阱。

增大时,图像中交点都要上升,而其横坐标
趋近于
,即

如果选取阱底为零势能点(同无限深方势阱),则左边为有限深方势阱各态能级,而右边恰为宽为

的无限深方势阱能级。其实
,有限深方势阱转化为无限深方势阱。当然
增大也可能是阱半宽
增大,但这样各态的能级趋于零,
时,这是自由粒子的情形。

2.6.2 散射态

易得一般解为(假设粒子从左边入射)

由标准边界条件(两个连续条件和两个导数连续条件),解得我们最关心的透射系数(反射系数可由

求出)

950828f54b8dd1da3c1b990c1b6594ce.png

当正弦函数为零时,完全透射,即

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个求解广义非线性薛定谔方程的 MATLAB 函数的示例: ```matlab function [Z, AT, AW, W] = solve_gnlsse(x, t, V, psi0, gamma, beta, alpha) % x: 空间网格点坐标 % t: 时间网格点坐标 % V: 势能函数句柄,V(x,t) % psi0: 初始波函数 % gamma, beta, alpha: 方程参数 % 空间和时间步长 dx = x(2) - x(1); dt = t(2) - t(1); % 空间网格和时间网格的大小 Nx = length(x); Nt = length(t); % 初始化波函数和势能 psi = zeros(Nx, Nt); psi(:,1) = psi0; V_mat = V(x, t); % 初始化变量 AT = zeros(Nx, Nt); AW = zeros(Nx, Nt); W = zeros(Nx, Nt); Z = zeros(Nx, Nt); % 循环求解 for n = 1:Nt-1 % 计算时间导数 dpsi_dt = (psi(:,n+1) - psi(:,n)) / dt; % 计算空间导数 d2psi_dx2 = (circshift(psi(:,n),[0 -1]) + circshift(psi(:,n),[0 1]) - 2*psi(:,n)) / dx^2; % 计算非线性项 NL = gamma * abs(psi(:,n)).^2 .* psi(:,n); % 计算线性项 L = -0.5 * d2psi_dx2 + V_mat(:,n) .* psi(:,n) + beta * abs(psi(:,n)).^2 .* psi(:,n); % 计算调和项 H = alpha * dpsi_dt; % 更新波函数 psi(:,n+1) = psi(:,n) + dt * (L + NL + H); % 保存变量 AT(:,n+1) = abs(psi(:,n+1)).^2 - abs(psi0).^2; AW(:,n+1) = angle(psi(:,n+1)) - angle(psi0); W(:,n+1) = dpsi_dt; Z(:,n+1) = V_mat(:,n); end end ``` 其中,广义非线性薛定谔方程的形式为: $$ i\hbar\frac{\partial \psi}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x,t) + \beta |\psi|^2 + \gamma |\psi|^4\right]\psi + \alpha \frac{\partial \psi}{\partial t} $$ 在这个函数中,我们使用了向量化和循环的方法来计算解。函数的输出包括波函数 `Z`、幅度和相位的变化量 `AT` 和 `AW`,以及时间导数 `W`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值