可由线性表示且表达式唯一_线性变换与群

这一系列是栏主阅读彭恒武、徐锡申老师所著的 数理物理基础——物理需用线性高等数学导引 一书的读书笔记。


一,线性变换

线性变换用这样一组方程组表示:

式中

为域中元素,对于确定的线性变换,这些元素的取值确定.关于域的概念,将在本文群的部分介绍.使用矩阵可以非常方便的将上面的等式表为

首先我们可以看出,线性变换是这样一个映射:

这一映射具有性质:

我们把前者称作齐性,后者称作加性.这两个性质合起来称作线性,用数学等式 写作:

它们可由矩阵的运算法则得出.

以上我们复习了线性变换,接下来我们再看线性空间,所谓线性空间指的是这样一个集合

,在这个集合上定义了两个元素的加法
,以及单个元素的数乘
,而且这个集合对这两种运算封闭(所谓封闭就是运算结果仍然在这个集合中).有了线性空间的定义,就可以定义出线性子空间了,所谓线性子空间
, 指的是线性空间
的一个子集(注意,每个集合都是它本身的子集),这个子集
对于
中的加法与数乘都封闭,显然
本身也是
的一个线性子空间.任取
中的元素
,这几个元素全部可能的线性组合构成
的一个线性子空间,称为由
生成.

现在我们来建立线性空间与线性变换的联系.线性变换操作的对象是一个元素,若对某一线性空间

中所有的元素都进行某一线性变换,那么就称我们对该线性空间进行了线性变换,得到的结果是一个集合
,这个集合中的元素全部都是
中元素线性变换的结果.容易证明,集合
也是一个线性空间,即线性变换具有这样的作用:它把线性空间映射为线性空间.

接下来我们探讨由线性映射所联系的两个线性空间之间的关系.由前述,我们知道线性变换可以由一个矩阵表示:

式中

现在我们可以断言:线性空间

是由
生成的子空间.证明如下:首先我们知道
可由矢量
生成,
的定义如下:

即除了第

分量为
以外,其余分量均为零.于是矢量
写为
,这一矢量的映射结果为
.若
跑遍所有可能的值,即
取所有可能的
的线性组合,由定义知,
生成的线性子空间.

线性空间中的一组矢量线性无关,若欲使得这一组矢量的线性组合为零,那么只有在所有项的系数为零时成立,数学表达式写作:

不是线性无关的矢量的集合称作线性相关的.有了线性无关的概念,我们可以定义基了,基矢对某一线性空间

定义的,若线性空间
可由线性无关的矢量集
生成,那么就说这一是两年集是线性空间
的一个基,基的个数
称为线性空间的维数.它的线性子空间
的维数
必定不大于
,即必有
.

现假定线性变换由矩阵

表示,若矢量组
线性无关,则称线性变换是非奇异的,否则,就称奇异的.线性空间由非奇异的线性变换映射为自身,或者说同维数的线性子空间,而奇异的线性变换则将它映射为它的真子空间.非奇异的线性变换是一一映射,且有逆,而奇异的线性变换则是多对一的映射,只有真子空间中的元素有逆,且逆不一定唯一.

现在我们来考虑非奇异线性变换的一些特征,首先它有逆:

有恒等变换:

变换既然为映射,那自然也有映射的合成(称为线性变换的乘法或积):

矩阵的乘法是由线性变换的合成导出的,所以上面最后一个等号自然成立.线性变换的乘法满足结合律,这由矩阵满足结合律容易知道.

另外我们再观察一下等边三角形的旋转操作与对称操作,在所有可能的操作中,我们仅讨论使得等边三角形保持不变的操作,并且要求操作的数目尽可能少,这意味着将在容纳等边三角形的平面内绕三角形的中心旋转三角形

角与
角视作同一操作,同样绕同一对称轴镜像变换奇数次为同一操作,而偶数次则与不动为同一操作,所有可能的总的操作有六个,即绕着中心旋转
,分别记作
,与绕过顶点
的对称轴的镜像变换
.现在我们来看这些操作的特征:有逆,有恒等变换(不动),有操作的合成,且合成满足结合律.

现在我们已经知道了两个集合,这个集合里每个元素都有逆,且有单位元,元素之间有一种运算,运算的结果仍然在这个集合里,运算满足结合律,这两个集合是所有非奇异线性变换组成的集合与让等边三角形保持不变的操作组成的集合.由此我们可以抽象出一种叫做群的数学结构,一个群由一个集合配上一种运算构成,运算往往称为群乘法(有时也叫群加法),集合对群乘法封闭,且有乘法单位元,用乘法单位元与其他元素做乘法得到的结果仍然是哪个元素,乘法单位元往往简称单位元(加法单位元往往简称零元),有了单位元就可以定义逆,某一元素的逆指的是,与该元素做乘法所得结果为单位元的那个元素,群的乘法应当满足结合律,此外若群乘法还满足交换律,则称为阿贝尔群(或交换群),若群中元素没有逆,就称为半群.

由上面的讨论知,所有非奇异线性变换的集合配上变换的合成构成一个群称为线性变换群,每个线性变换都对应一个矩阵,容易证明,非奇异矩阵配上矩阵的合成构成一个群,称为矩阵群,而等边三角形配上上述操作构成一个群,称作二面体群

.

若一个集合不仅对一种操作构成阿贝尔群,对另一种操作也构成阿贝尔群,为了区分,把其中一种称为乘法,另一种叫做加法,若乘法对加法有分配率,那么就说这个集合配上群乘法与群加法构成一个域,有理数与实数、复数都是一个域,称为有理数域,实数域,复数域.

现在我们可以来说一说群同构了,所谓群同构,指的是两个群$G,G^*$之间有这样一个一一对应的关系:

容易证明线性变换群与矩阵群之间有群同构关系,统称为一般线性群

,一般线性群有一个子群,即元素只取矩阵行列式为
的那一部分,称为特殊线性群
.

所有的平移变换

组成一个群,称为平移群.而所有对仿射变换组成一个群,称为仿射变换群
,群中的元素为
.

接下来我们来看一看

的一些重要的子群,它们是正交群与幺正群,以及对称群.

正交群将元素限制在正交变换上,正交变换保实数域上的线性空间的内积,与之对应的矩阵称为正交矩阵,正交群也叫转动反射群,记作

,若将元素限制在矩阵行列式为
的那一部分,则成为特殊正交群,也叫转动群,记作
.欧几里得群
中的元素由转动变换与平移变换合成:

欧几里得群常用于描述刚体的转动.

若线性空间是定义在复数域上的,则称为幺正群,对应矩阵称为厄米矩阵,幺正群记作

,将其中元素限制在矩阵行列式仅为
的那一部分则构成特殊幺正群,记作
.

对称群又是正交群的一个子群,它的元素具有这样的特性,它将一个

维矢量映射为一个新的矢量,而这个新的矢量的坐标不过是原来那个矢量坐标的重新排列,具有这种性质的变换称为
元置换,置换常用写作:

所有

元置换组成的集合构成
阶对称群
中共有
个元素.置换可以由轮换表示,所谓轮换,是一种特殊的置换,用
表示轮换,则轮换具有这一特点:

这样的轮换常记作

置换分解为轮换所得到的结果是唯一的.另外还有一种特殊的置换叫对换,用
表示对换则对换定义如下:

可以证明任何一个置换都可以表示成对换之积,若对换的个数为奇数个,则称为奇置换,否则称为偶置换,一个对称群中奇偶置换各占一半,所有的偶置换也构成一个群,称为交错群,记作

.

另外很重要的一个群是循环群,设集合

有元素
,而集合中其余元素都可以表示成
这样的形式,那么就称
为一个循环群,
叫做循环群的生成元,若存在一个
使得
为单位元,那么就称群
阶循环群.

未经作者授权,禁止转载!

目录传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值