当公式或文字展示不完全时,记得向左←滑动哦!
本文主要对于向量组之间的线性相关与线性无关的概念进行了总结,希望大家对于基本定义所得到的结论,要熟练掌握,本节的例题也给出了线性相关与线性无关定义在解决实际问题中的运用,希望大家能够熟掌握.
定义 1. 中向量组
称为是线性相关的,如果有K中不全为0的数 使得定义 2. 中向量组
如果不是线性相关的,那么称为线性无关的,即如果从 可以推出所有系数 全为 那么称向量组 是线性无关的.岩宝小提示:仔细体会定义1和定义2就可以得到如下的结论:
因为
1.包含零向量的向量组一定线性相关.
2.单个向量 线性相关当且仅当
3.在 中,向量组是线性无关的
可得出
- 向量组线性相关 它们有系数不全为0的线性组合等于零向量.
- 向量组 线性无关 它们只有系数全为0的线性组合才会等于零向量.
- 从线性表出来看:向量组线性相关 其中至少有一个向量可以由其他向量线性表出.
- 从齐次线性方程组看:
(1)列向量组 线性相关 齐次线性方程组有非零解.
(2)列向量组 线性无关 齐次线性方程组只有零解.- 从行列式看:
(1)n个n维列(行)向量组线性相关 以为列(行)向量组的矩阵的行列式等于0.
(2)n个n维列(行)向量组线性无关 以为列(行)向量组的矩阵的行列式不等于0.- 从向量组与它的部分组的关系来看:
(1)如果一个向量组的一个部分组线性相关,那么整个向量组也线性相关.
(2)如果向量组线性无关,那么它的任何一个部分组也线性无关.
命题1.设向量组
线性无关,则 向量可以由线性表出的充分必要条件为 线性相关 推论 1. 设向量组 线性无关,则 向量不能由线性表出的充分必要条件为 线性无关例1.(2016青岛大学)设向量组
线性无关,向量 可由该向量组线性表示,但向量 不能由该向量线性表示.
证明:对于任意数 向量组 必定线性相关.
证明:设
若 则由条件知向量 可由
线性表示, 故 可由 线性表示, 与已知条件矛盾. 所以又 线性无关,所以 从而结论成立.
例2.(2018西北大学)设向量组
线性无关,讨论下面向量组 的线性相关性.
证明:
其中
因为向量组 线性无关, 所以当 s 为奇数时,则 线性无关; 当 s 为偶数时,则 线性相关.例 3 . 设
为 m+1 个向量, 且 其中 线性无关, 证明 也线性无关.
证明:因为
线性无关,且 所以有 即有其中
例4. 证明:向量组
线性相关的充要条件是, 至少有一个 可由其前面的向量 线性表示.
证明:
充分性: 显然成立.
必要性: 设
由于
所以不可能有 所以有即
可由其前面的向量 线性表示.例5. 设向量 可由向量组
线性表示,证明: 表示法唯一的充要条件是 线性无关.
证明:设有
两式相减,得
若
线性无关,则即表示法唯一. 反之,若(1)式成立,且表示法唯一,则若有
则由(1)(2)式可得
但是由于表示法唯一,故
从而
故 线性无关.岩宝同步思考练习:
1.设向量 可由向量
线性表示,但不能由其中任何一个个数小于 m 的部分向量线性表示,求证: 这 m 个向量线性无关。2.设向量
是线性空间 中的一组线性无关的向量, 是 中的向量,求证:或者 线性无关或者 是的线性组合
