comsol如何定义狄利克雷边界_COMSOL最后的大招——基于方程建模

本文通过COMSOL详细介绍了如何使用系数形式偏微分方程来建立热方程模型,展示了一种在几何模型中设定狄利克雷边界条件的方法。随着模拟过程,探讨了如何通过积分运算计算热能累积,并讨论了在特定场景下如何利用域常微分和微分代数方程来模拟局部效应,例如模拟木条在加热过程中的烧焦情况。
摘要由CSDN通过智能技术生成

系数形式偏微分方程是包含项最全面的微分方程,通过它我们可以建立各种形式的微分方程,热方程当然也包含在内。我们也可以直接用经典偏微分方程->热方程来建模,此处为了演示系数形式偏微分方程的用法,我们暂不采用热方程。

我们知道固体中的热方程具有以下的形式:

其中α为热扩散系数。对比系数形式偏微分方程,留下的仅有堆积储存项、扩散项和源项,因此我们只需要对da,c,f赋以恰当的值,其他系数均设置为0即可。

几何模型如图所示,中间为热源,边界条件为两端温度恒定,其他边界热通量为0。

由于不同域的方程参数不同,模型中建立了两个系数形式偏微分方程,分别指定热源区域和其他两部分区域的方程参数。取c=1,da=1,热源域f=1,其他域f=0。

下面的图形展示了随时间变化求解域中的温度变化情况。

接下来我们考虑,随着时间的增长,热能累积是多少?这就需要偏微分方程和常微分方程联合求解。

首先,我们需要对u在空间上进行积分,然后再在时间上积分。

空间积分在软件中可以很简单的操作ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值