系数形式偏微分方程是包含项最全面的微分方程,通过它我们可以建立各种形式的微分方程,热方程当然也包含在内。我们也可以直接用经典偏微分方程->热方程来建模,此处为了演示系数形式偏微分方程的用法,我们暂不采用热方程。
我们知道固体中的热方程具有以下的形式:
其中α为热扩散系数。对比系数形式偏微分方程,留下的仅有堆积储存项、扩散项和源项,因此我们只需要对da,c,f赋以恰当的值,其他系数均设置为0即可。
几何模型如图所示,中间为热源,边界条件为两端温度恒定,其他边界热通量为0。
由于不同域的方程参数不同,模型中建立了两个系数形式偏微分方程,分别指定热源区域和其他两部分区域的方程参数。取c=1,da=1,热源域f=1,其他域f=0。
下面的图形展示了随时间变化求解域中的温度变化情况。
接下来我们考虑,随着时间的增长,热能累积是多少?这就需要偏微分方程和常微分方程联合求解。
首先,我们需要对u在空间上进行积分,然后再在时间上积分。
空间积分在软件中可以很简单的操作ÿ