
● 本文适合高二下学期、高三一轮复习的同学阅读。先看视频再看文字,看视频时注意利用暂停,想清楚每一步变形的依据。
01
离散型随机变量的均值
视频讲解
1、离散型随机变量的均值

2、均值的性质
若Y=aX+b,其中a,b为常数,X是随机变量,
①Y也是随机变量;
②E(aX+b)=aE(X)+b。
3、两点分布、二项分布的均值
(1)两点分布:若X服从两点分布,则E(X)=p .
(2)二项分布:若X~B(n,p),则E(X)= np
两点分布与二项分布辨析
①相同点:一次试验中要么发生要么不发生.
②不同点:随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值X=0,1,2,…,n.;试验次数不同,两点分布一般只有一次试验,二项分布则进行n次试验.。
4、利用定义求随机变量的均值
例 袋中有4个红球,3个白球,从袋中随机取出4个球.设取出一个红球得2分,取出一个白球得1分,试求得分X的均值.。


求随机变量X的均值的方法和步骤
(1)理解随机变量X的意义,写出X所有可能的取值.
(2)求出X取每个值的概率P(X=k).
(3)写出X的分布列.
(4)利用均值的定义求E(X)。
5、运用离散型随机变量均值性质解题



若给出的随机变量ξ与X的关系为ξ=aX+b,a,b为常数.一般思路是先求出E(X),再利用公式E(aX+b)=aE(X)+b求E(ξ).也可以利用X的分布列得到ξ的分布列,关键由X的取值计算ξ的取值,对应的概率相等,再由定义法求得E(ξ).。


02
离散型随机变量的方差、标准差描述偏差
视频讲解
6、方差、标准差


均值体现了随机变量取值的平均大小,在两种产品相比较时,只比较均值往往是不恰当的,还需比较它们的取值偏离于均值的平均程度,即通过比较方差,才能准确地得出更恰当的判断.。这就是学习方差的意义。
7、两点分布、二项分布的方差











03
数据散布特征为何选方差?何为自由度?

(本文图片与视频来自于网络,仅供学习交流用,若有侵权,请联系删除。)

人生有缘才相遇 扫码相识更有趣

微信号 :rong19711107
公众号:周老师松果数学
● 扫码联系我
zlssgsx



