二阶振荡环节的谐振频率_自动控制系统时域分析十三:对数频率特性

本文深入探讨了自动控制系统的二阶振荡环节,详细解析了对数频率特性曲线(波德图),包括横纵坐标的分度规则。重点讲述了谐振峰值频率wp的计算,指出当阻尼系数ζ=0.707时,wp=0,揭示了ζ对谐振峰值的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:对数频率特性曲线(波德图-Bode图)

Bode图由对数幅频特性和对数相频特性两条曲线组成。

⒈波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:

1)横坐标分度(称为频率轴):它是以频率w的对数值logw进行线性分度的。但为了便于观察仍标以w的值,因此对w而言是非线性刻度。w每变化十倍,横坐标变化一个单位长度,称为十倍频程(或十倍频),用dec表示。类似地,频率w的数值变化一倍,横坐标就变化0.301单位长度,称为“倍频程”,用oct表示。如下图所示:

249b99fe4898057e47c7e5855bfb8bc4.png

d5f51001d7447168a2d042fa972f5c3f.png

2)纵坐标分度:对数幅频特性曲线的纵坐标以L(w)=20logA(w)表示。其单位为分贝(dB)。直接将20logA(w)值标注在纵坐标上。

相频特性曲线的纵坐标以度或弧度为单位进行线性分度。一般将幅频特性和相频特性画在一张图上,使用同一个横坐标(频率轴)。当幅制特性值用分贝值表示时,通常将它称为增益。幅值和增益的关系为:增益=20log(幅值)

f9b9ab3e46b890dca9ef3fcd73bd5e9e.png

二:典型Bode图

1. 比例环节 G(s)=K

G(jw)=K幅频特性:A(w)=K;相频特性:ψ(w)=0

95ec524af4b9751a4e4ff1e2b8d920cb.png

2. 积分环节 G(s)=K/s

ab577488e843117665f7e572308eb774.png

cd7839911466968cc5d80c3da7bb9d81.png

60353f7233c2b69bd2fba50e71b32b13.png

3. 惯性环节

92a92a77047ff3e1d8b7b1a7361cec18.png

db7190b720cec35c717982d610b7ad8f.png

825fd1be1e67c2b040d91bfa30d73fa5.png

5c8aefb24c9d8b1f2e690b676eeef305.png

4. 振荡环节

80fb7b032759f287376886253d7d01c6.png

054d3ce53eda9441e498b67af1867be8.png

相频特性:

98f8b48abd05fd32129b413779deaaa6.png

699dedafcf3904847e1203287f62c179.png

对A(w)求导并令等于零,可解得A(w)的极值对应的频率wp:

841f4f9f5d5bbd3118cb73639a1d21c0.png

该频率称为谐振峰值频率,可见当ζ=0.707时,wp=0。

当ζ>0.707时,无谐振峰值

当ζ<0.707时,有谐振峰值:

32280daf2bc5e60d00f929970171c75d.png

因此在转折频率附近的渐近线依不同阻尼系数与实际曲线可能有很大的误差。

f9ee7c6715604117e8a2278862fccb15.png

下一节将继续介绍对数频率特性的微分环节以及延迟环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值