频域分析法
①频域特性可以通过分析法和实验法获得,并可以用多种形式的曲线表示,因而系统分析和控制器设计可以应用图解法进行
②频域特性物理意义明确,对于一阶和二阶系统,频域性能指标和时域性能指标有明确的对应关系;对于高阶系统,可以建立近似的对应关系
③频域设计可以兼顾动态响应和噪声抑制两方面的要求
④频域分析法不仅适用于线性定常系统,还可以推广应用于某些非线性控制系统
几何表示
幅相频率特性曲线:又称为幅相曲线或极坐标图,以横轴为实轴、纵轴为虚轴,构成复数平面,绘制w从0到+∞的曲线
对数频率特性曲线:又称为伯德曲线或伯德图,横坐标为lgw,单位为rad/s,纵坐标为
单位为dB,
对数相频曲线的纵坐标为φ(w),单位为°,由此构成的坐标系称为半对数坐标系
对数幅相曲线:又称为尼科尔斯曲线或尼科尔斯图,纵坐标为L(w),单位为dB, 横坐标为φ(w),单位为° ,w为参变量
典型环节
①最小相位环节
②非最小相位环节
除比例环节外,最小相位环节和非最小相位环节的区别在于开环零极点的位置(非最小相位环节在s右半平面,最小相位环节在s左半平面)
①最小相位环节和对应的非最小相位环节(比例环节、惯性环节、振荡环节、一阶微分环节、二阶微分环节)幅频特性相同,相频特性符号相反,幅相曲线关于实轴对称;对数幅频曲线相同,对数相频曲线关于0°对称。
②传递函数互为倒数的典型环节(最小相位典型环节中的积分环节和微分环节、惯性环节和一阶微分环节、振荡环节和二阶微分环节,非最小相位环节中传递函数互为倒数的典型环节)对数幅频曲线关于0dB对称,对数相频曲线关于0°线对称
③振荡环节和二阶微分环节
振荡环节
二阶微分环节——传递函数为振荡环节的倒数
w∈(wr,∞)时,A(w)单调递增