线段中点到另一直线距离最短_「解题策略」最值系列之将军饮马(一)

将军饮马问题源于唐代诗句,是个有趣的数学问题,旨在找到使路程最短的路径。问题简化为在直线上找一点,使得该点到两端点的距离之和最小。解决方法是通过作点的对称点,将折线转换为直线,当对称点、中间点共线时,路径达到最短。这一策略也应用于不同几何图形,如正方形、等边三角形等,通过寻找对称点来求解最短路径问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

01

什么是将军饮马?

【问题描述】

如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?

f7d9ab42e499e163dcd23b1c20860ae0.png

【问题简化】

如图,在直线上找一点P使得PA+PB最小?

dc8c3ad5c705e4a35633754aaac2748b.png

【问题分析】

这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.

【问题解决】

作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+PB

b6b919d1390d0e9cbd6c3182210467a0.png

当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短)

01800c0dac6c385e25a1744d36a17d3c.png
4a3b60242c05a84a6accad152afdebc1.png

作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.

4a3b60242c05a84a6accad152afdebc1.png

02

将军饮马模型系列

“一定两动”之点到点

在OA、OB上分别取点M、N,使得△PMN周长最小。

【此处昨日推文配图错误,正确图如下】

7dc2185182b4da417d9fc63b381dc9ee.png

此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P'M+MN+NP'',当P'、M、N、P''共线时,△PMN周长最小。

b3ee4e7409bea48ace7ceaab6f0589aa.png

【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为________.

4fd78342de02fb4bb6cfbdd83c93ce71.png

【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P'、P'',化PM+PN+MN为P'N+MN+P''M.

1c00d62caf8ef3daa2e8cf4c4b6e216b.png

当P'、N、M、P''共线时,得△PMN周长的最小值,即线段P'P''长,连接OP'、OP'',可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值