
模型研究 | 最值之将军饮马、将军遛马、将军过河
解题研究|名师之作:几何最值问题大一统
初中数学必会之模型解题法
归类提升 | 初中数学常见几何模型全解析
名师系列 | 经典几何模型之“阿式圆”
学会此6大类模型,轻松秒杀初中数学相似问题
传说早在古罗马时代,亚历山大城有一位精通数学和物理的学者,名叫海伦。一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:如图,将军从军营A出发先到河边饮马,再去同侧的B地开会,应该怎样走才能使路程最短?这个问题的解决并不难,据说海伦略加思索就解决了它,展现了他的个人智慧。从此,这个被称为“将军饮马”的问题广为流传。
2.究其本质,巩固模型。
如图,A、B两点分别表示两幢大楼所在的位置,直线n表示输水总管道,直线b表示输煤气总管道。现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短。图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是( )
A F和C B F和E C D和C D D和E
评析:虽然图形略有改变,但是究其本质,它仍然是我们已建立的基本模型。根据模型易得:输水分管道的连接点是点B关于a的对称点B′与A的连线的交点F,煤气分管道的连接点是点A关于b的对称点A′与B的连线的交点C,故选A。此例关键是抓住模型的本质特征,进一步巩固已经建立的模型,从而达到学以致用的效果。
3.一“模”多变,触类旁通。
通过以上模型的建立,我们把题目做一些变式。
模型变式------ 两定点到直线上一动点的线段距离和最短问题
变式①:“模型”在三角形中
如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,求EM+BM的最小值_____。
评析:此例是求两个定点到直线上一个动点距离和最短问题。只要抓住模型的本质特征,作出图形,找到点M的位置并不困难。例如:解法(一)图形,然后利用等边三角形的特殊性质,结合勾股定理的知识,再求出这条线段CE’的长度。也可用解法(二)图形,先利用模型,再根据“点到直线的距离最短”并结合勾股定理来考虑解题方案。由此