动点四边形周长最短_“将军饮马”模型在实际解决最短路径和动点问题的应用...

“将军饮马”问题源于唐朝诗词,探讨了如何找到最短路径的问题。该问题在数学中有多种变形,包括寻找使周长最短的点、线段和最小等。通过构造对称点,可以解决在直角或等边三角形内找到使四边形周长最短的点。这一模型在实际问题中有着广泛的应用,并常见于中考试题之中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”诗中隐含着一个有趣的数学问题.

如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问怎样走才能使总的路程最短?这就是所谓的“将军饮马”问题。

47aa645883c82b1480ca02bd84cdc382.png

实际上,我们将问题再进一步画图:

3e698c8f09463e8ecd9f7e5e02e63da4.png

图中所示O点便为最佳的饮马地点,原因在于从A到O和从A’到O距离相等,而两点间距离最短,所以A’B能取的最短值便是(红色长于蓝色)。

这只是"将军饮马"问题的一种形式,它还有多种变化(在直线上找一点满足下列条件):

(1)PA+PB最小

62f950ef10f8c39f6f86f7b62cbcd608.png

(2)PA-PB最小

06da4fe29fadaced83213e81304a7f60.png

(2)PA-PB最大

90471eeb2d01b0f36d6c5ad05127985b.png

(4)周长最短

fb4df8434d949dc497ff86fcfcfb5421.png

(5)“过河”最短距离(注意河宽)

d27a7d43e6bab45c15a3d907f48bf8ab.png

(6)线段和最小(实线)

a5797dd1b00b8d6eb2ce5181d092a710.png

(7)坐标系中的应用

73e39ccc90eb02402cdf55cb2a198dca.png

把模型简单进行举例:

1、如图,点 P 在锐角∠AOB 的内部,在 OB 边上求作一点 D,在 OA 边上求作一点 C,使△ PCD 的周长最小。

思路:做点P关于直线OA, OB的对称点P1, P2,P1P2与直线OA、OB的交点为所求点C、D,PCD的周长最小值为P1P2的长。

e6831447bf322cbf7a4535f35922e09f.png

2、在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.

思路:作点A关于OM的对称点A’,作点B关于ON的对称点B’ ,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.

f8d75d60df136252e964d64f19341bb6.png

3、如图,在等边△ABC中,AB = 6,AD⊥BC,E是AC上的一点,M是AD上的一点,且AE = 2,求EM+EC的最小值

思路:同样找C关于AD的对称点,实际上即为B,

9d44f75343990d6a21944dff614f74a2.png

实际上在中考试题中也经常出现类似题目,有兴趣的可以找一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值