MATLAB图像处理:图像复原技术(三)Richardson-Lucy算法

Richardson-Lucy(RL)算法是一种基于泊松噪声模型的迭代非盲去模糊方法,广泛用于天文影像恢复、显微镜图像增强等领域。本文将深入解析其数学原理、MATLAB实现细节及调优策略。

一、算法理论推导

1.1 基本假设
  • 观测图像g满足泊松分布:
  • H为已知PSF矩阵
  • 目标是估计原始图像f

1.2 最大似然估计导出迭代公式

 

通过极大化似然函数,导出迭代式:

 

二、RL算法特性

2.1 核心优势
  1. 泊松噪声适配:天然契合低照度设备的噪声特性
  2. 非负性保持:迭代过程强制像素非负
  3. 分辨率提升:迭代次数增加可能恢复高频细节
2.2 典型问题
  • 过拟合噪声:迭代次数过多时噪声被错误放大
  • 振铃效应:尤其在强边缘附近(如文本边界)
  • 计算耗时:大尺寸图像或复杂PSF时迭代缓慢

三、MATLAB实现

迭代次数PSNR (dB)视觉效果特征
1034.95残留模糊,细节不足
3036.99最佳折衷(推荐范围)
10038.80明显噪声放大,伪影增多

四、与维纳滤波的对比选型

指标Richardson-Lucy维纳滤波
噪声模型泊松噪声最优高斯噪声较优
计算效率低(需多次迭代)高(单次频域计算)
细节恢复高频信息保留更好易过平滑
适用场景显微成像、天文摄影常规摄影图像去模糊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值