bms中soh计算方式_面向新能源汽车电池SOC和SOH的组合估计

本文提出了一种结合电荷状态(SOC)和健康度(SOH)的锂电池估算方法。通过一阶RC模型和扩展卡尔曼滤波器,实现SOC实时估计与SOH离线更新,有效应对电池老化导致的估算误差问题。
7150b56e644207fa3604e6403ca15dd5.png

摘要

提了一种在锂电池寿命内的电荷状态(SOC)和健康度(SOH)组合估计方法。首先,一阶电阻-电容模型的标称参数的 SOC 依赖性已经被确定了,并且电池寿命内的标称模型性能下降也已经被量化。其次,使用两个不同时标的扩展卡尔曼滤波器作为组合 SOC 和 SOH 的监控器:SOC 是实时估计的,SOH 是离线更新的。SOH 估计的时标由模型准确性的衰减程度决定。使用大量电池寿命内的测试数据来证明 SOC 和 SOH 估计的结果。

介绍

锂电池已经在新能源汽车领域被广泛使用,其高可靠性,高效率以及操作的安全性都需要被监管,控制和管理。作为电池管理系统(BMS),核心功能就是提供准确的 SOC 和 SOH 估计。由于缺少电气特性传感器的支持,精准的预测是一个挑战很高的任务。现在已经有很多基于 SOC 和 SOH 估计的算法,各有优缺点,总结如下:

表格 1 现有对 SOC 和 SOH 估计算法的优缺点

1933e2a1a2b1a5629d93ffbbd28066ea.png

其中,库伦计数法和开路电压法被广泛使用,其具有计算快捷且容易使用的特点,但是高度依赖高精度的传感器,并且开路电压法对于电压曲线呈现水平状的电池往往效果不好。同时,现阶段已经出现基于人工智能方法的黑盒 SOC 预测模型,比如神经网络模型,模糊逻辑以及支持向量回归模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值