rb rc 变频器中ra_常用变频器接线端子集锦及接线示意图

本文详细介绍了变频器接线端子的种类、功能及其在工程中的作用。变频器接线端子分为强电端子和弱电端子,分别用于传递电力和控制指令。强电端子包括供电电源、电机、直流母线等端子,而弱电端子涉及控制信号、模拟量输出和通讯端子等。接线端子的选择和布局对于变频器的正常工作和与外围设备的配合至关重要。文章还提供了不同类型的端子应用实例,如插拔式、直焊式和栅栏式端子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

变频器接线端子概述

变频器接线端子隶属于连接器的一种,种类分单孔,双孔,插口,挂钩等,从材料分,铜镀银,铜镀锌,铜,铝,铁等。它们的作用主要传递电信号或导电用,在工程中,它是站前工程为站后工程预留的接口,是站后接口工程的预埋设施。

变频器从功率分成:强电端子和弱电端子两大类;
(1)强电端子是指高电压高功率的接线端子,通常包括RST供电电源端子、UVW电机端子、P+和N-直流母线端子、PB制动电阻端子、E散热铝片接地端子等。变频器的能量通过这些端子传递进来,处理后传递出去给电机。

(2)弱电端子包括+24V、com、+10V、GND这类弱电电源端子,FWD正转、REV反转、X1~X7多功能定义端子、RA、RB、RC内部继电器输出端子、AO模拟量输出端子、VI、AI模拟量输出端子、RS485通讯端子等等,这类也叫控制端子。

变频器的怎样转、转多少速度、它现在的状态怎样、和外围设备怎样联手运作等都通过这些端子的电平高低来实现。通常FWD、REV、X1~X7通过外部接触器的触点信号的开闭,送入指令给变频器。一般采用常开触点控制较多,某些变频器还可以自行定义逻辑信号的正反逻辑。

d4e15e47082c371714081fac4b8a1437.png

应用说明:富士变频器选用的端子有插拔式端子、直焊式端子和栅栏式端子

339f6712caba50fab25f986b4db229a3.png

应用说明:变频器选用的是双层栅栏式端子

b68010b5f65255fc2c5e3f34280640be.png

应用说明:变频器选用的是双层栅栏式端子

0686b6d165abb76e48a07c6c0a5e8d3d.png

应用说明:变频器选用的是直焊式接线端子(LG127)

6b478a103c2a8638c807628a491d6465.png

应用说明:变频器选用的是直焊式接线端子(LG127HB)

7ad1957e517732d749019f44e89c084b.png

应用说明:变频器选用的是栅栏式端子

3dc916e09f6598091bb6d5605d750f63.png

应用说明:变频器选用的是插拔式式端子

47ba4176aa2e098287b905eac4b9ca37.png

应用说明:变频器选用的是插拔式端子(LZ1系列)

变频器接线端子功能使用解析

1、变频器的接线端子使用说明
变频器的接线端子分为主回路和控制回路两大部分,把变频器后上盖打开,即可看到主回路端子和控制回路端子,使用时务必依照附录图2.3.1所示进行接线。由于附录图2.3.1为变频器的标准接线图,在具体使用时,有些功能并不需要,应根据具体的使用要求进行必要的配线,不需要的控制端可以空开不用。

0a11d8b8286df0520e980ecdc5578e2c.png

2、接线端子排列图

31ab8e6d3fc35e802fc01e7f396a353a.png

3.控制回路接线
控制回路接线必须与主回路分开,否则会引起干扰,使控制功能失灵,根据使用要求,设计控制回路接线.不需要的端子可以空开不用,控制端子功能如附录表2.3.2

4bc930b6e8f6d226fb4d962d6f01d851.png
7c0aff89804812bd04ef6a85ad751e3f.png

4、控制端子功能

990c04e3914d3ecdd61ae048c6a1e2d0.png
9a0843d018437909ca8a1861ff3c5651.png
深度学习(DL,Deep Learning)是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)。 [1] 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 [1] 深度学习在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 [1] 深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法: [2] (1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。 [2] (2)基于多层神经元的自编码神经网络,包括自编码(Auto encoder)以及近年来受到广泛关注的稀疏编码两类(Sparse Coding)。 [2] (3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。 [2] 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation learning)。 [3] 以往在机器学习用于现实任务时,描述样本的特征通常需由人类专家来设计,这成为“特征工程”(feature engineering)。众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好特征也并非易事;特征学习(表征学习)则通过机器学习技术自身来产生好特征,这使机器学习向“全自动数据分析”又前进了一步。 [3] 近年来,研究人员也逐渐将这几类方法结合起来,如对原本是以有监督学习为基础的卷积神经网络结合自编码神经网络进行无监督的预训练,进而利用鉴别信息微调网络参数形成的卷积深度置信网络。与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。 [2] 20世纪八九十年代由于计算机计算能力有限和相关技术的限制,可用于分析的数据量太小,深度学习在模式分析中并没有表现出优异的识别性能。自从2006年,Hinton等提出快速计算受限玻耳兹曼机(RBM)网络权值及偏差的CD-K算法以后,RBM就成了增加神经网络深度的有力工具,导致后面使用广泛的DBN(由Hin
合并Transformer和残差U-Net网络结构在水下图像增强中可以利用Transformer的全局上下文理解和残差U-Net的细节保留能力。以下是一个简化版的Python代码示例,使用PyTorch库来实现这种融合: ```python import torch import torch.nn as nn class ResidualUNetBlock(nn.Module): # 残差U-Net块 def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride=stride, padding=padding) def forward(self, x): identity = x x = self.conv1(x) x = self.relu(x) x = self.conv2(x) return x + identity # 残差连接 class AttentionBlock(nn.Module): # 自注意力块,类似Transformer编码器的一部分 def __init__(self, channels): super().__init__() self.channel_attention = nn.Sequential( nn.Linear(channels, channels // 8), nn.ReLU(), nn.Linear(channels // 8, channels), nn.Sigmoid() ) self.spatial_attention = nn.Sequential( nn.Conv2d(channels, 1, kernel_size=1), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() channel_attn = self.channel_attention(x.view(b, c, -1)).view(b, c, 1, 1) spatial_attn = self.spatial_attention(x) combined_attn = channel_attn * spatial_attn return x * combined_attn # 合并网络 class CombinedModel(nn.Module): def __init__(self, input_channels, num_classes, num_transformer_blocks=6): super().__init__() self.u_net = nn.Sequential(ResidualUNetBlock(input_channels, 32), ...) # 根据需要添加更多的层 self.transformer_encoder = nn.TransformerEncoderLayer(d_model=input_channels//4, nhead=8) # 调整通道数 self.transformer = nn.TransformerEncoder(self.transformer_encoder, num_transformer_blocks) def forward(self, x): u_net_out = self.u_net(x) transformer_out = self.transformer(u_net_out.permute(0, 2, 1)) # 将输入从CHW转到HWC fused_output = u_net_out + transformer_out.permute(0, 2, 1) # 再将特征图拼接 return fused_output # 使用示例 model = CombinedModel(input_channels=3, num_classes=1) # 输入3通道,输出单通道 input_image = torch.randn(1, 3, 512, 512) # 假设输入大小为512x512 output = model(input_image) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值