ARCH模型
ARCH模型的英文直译是:自回归条件异方差模型。
是一种用来处理时间序列的模型。在股票中,ARCH可以用来预测股票的波动率,从而控制风险。(在金融领域,波动率与风险直接挂钩,一个资产波动越大,风险越大,而获得更高收益的可能也更大)
ARCH模型广泛应用于波动性有关广泛研究领域。包括政策研究、理论命题检验、季节性分析等方面。
要了解这是一种怎样的模型,我们可以从这个名字入手:自回归、条件异方差。
自回归
回归分析,是我们经常用到的统计模型。
我们经常用回归分析来解释一些事物的变化,用的最多的是线性回归,可以帮助我们找到一些事物之间的相关系。
举个简单的例子:
身高=70%遗传因素+30%后天因素
在这个简单的公式中,就用到了回归分析,身高可以被遗传因素和后天因素两种因素解释,我们还找到了他们各自的比重:如果你的个子不高,那就要努力提高下一代的后天因素了。
这就是一个回归。那自回归呢,我们可以理解为自己与自己的回归,在时间序列上,也就是昨天的你、前天的你,对今天的你的影响。
今天的身高=a昨天的身高+b前天的身高+c*前期天的身高+......
因为,用到的因素都是你自己,只是时间不同,所以这种回归叫做自回归。
自回归模型,是统计上一种处理时间序列的方法,是用同一变量之前各期的表现情况,来预测该变量本期的表现情况,并假设它们为线性关系。因为这是从回归分析中的线性回归发展而来,只是不