arch模型的思路_ARCH模型是什么?

ARCH模型是一种处理时间序列波动性的统计工具,常用于预测金融领域的波动率。它通过自回归方式捕捉过去时期自身对当前值的影响,并考虑随机扰动项的异方差性。模型描述了条件方差随时间变化的特性,但不解释异方差产生的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARCH模型

ARCH模型的英文直译是:自回归条件异方差模型。

是一种用来处理时间序列的模型。在股票中,ARCH可以用来预测股票的波动率,从而控制风险。(在金融领域,波动率与风险直接挂钩,一个资产波动越大,风险越大,而获得更高收益的可能也更大)

ARCH模型广泛应用于波动性有关广泛研究领域。包括政策研究、理论命题检验、季节性分析等方面。

要了解这是一种怎样的模型,我们可以从这个名字入手:自回归、条件异方差。

自回归

回归分析,是我们经常用到的统计模型。

我们经常用回归分析来解释一些事物的变化,用的最多的是线性回归,可以帮助我们找到一些事物之间的相关系。

举个简单的例子:

身高=70%遗传因素+30%后天因素

在这个简单的公式中,就用到了回归分析,身高可以被遗传因素和后天因素两种因素解释,我们还找到了他们各自的比重:如果你的个子不高,那就要努力提高下一代的后天因素了。

这就是一个回归。那自回归呢,我们可以理解为自己与自己的回归,在时间序列上,也就是昨天的你、前天的你,对今天的你的影响。

今天的身高=a昨天的身高+b前天的身高+c*前期天的身高+......

因为,用到的因素都是你自己,只是时间不同,所以这种回归叫做自回归。

自回归模型,是统计上一种处理时间序列的方法,是用同一变量之前各期的表现情况,来预测该变量本期的表现情况,并假设它们为线性关系。因为这是从回归分析中的线性回归发展而来,只是不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值