【量化笔记】时间序列--ARCH模型及GARCH模型

本文深入探讨金融时间序列分析中的ARCH和GARCH模型。内容涉及模型背景,如时间序列的自相关特性、条件异方差、波动聚集现象和厚尾分布。ARCH模型通过过去波动率解释当前波动率,而GARCH模型进一步考虑了近期残差平方的影响。建模过程包括选择阶数、分布假设、参数估计和检验。
摘要由CSDN通过智能技术生成

本文内容

  • ARCH模型
    • ARCH模型的建模过程
  • GARCH模型

金融数据的时间序列,有以下几个普遍现象

  • 一组时间序列本身可能只有非常微弱的自相关性,而这组时间序列的函数(比如平方,绝对值等)呈现很强的自相关性
  • 有些资产收益率序列的条件方差会随着时间发生改变,也就是呈现条件异方差性。
  • 资产收益率序列的波动会有持续的现象,大波动跟着大波动,小波动跟着小波动,也就是波动聚集现象。
  • 许多资产收益率序列不服从正态分布,期极端之较多,具有厚尾现象。

ARCH模型

ARCH模型认为模型的序列值波动与其过去p期的波动有关。模型表达式为:
ϵ t = σ t u t σ t 2 = α 0 + α 1 ϵ t − 1 2 + . . . + α p ϵ t − p 2 \epsilon_t=\sigma_t u_t \\\sigma_t^2=\alpha_0+\alpha_1\epsilon_{t-1}^2+...+\alpha_p\epsilon_{t-p}^2 ϵt=σtutσt2=α0+α

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值