本文内容
- ARCH模型
- ARCH模型的建模过程
- GARCH模型
金融数据的时间序列,有以下几个普遍现象
- 一组时间序列本身可能只有非常微弱的自相关性,而这组时间序列的函数(比如平方,绝对值等)呈现很强的自相关性
- 有些资产收益率序列的条件方差会随着时间发生改变,也就是呈现条件异方差性。
- 资产收益率序列的波动会有持续的现象,大波动跟着大波动,小波动跟着小波动,也就是波动聚集现象。
- 许多资产收益率序列不服从正态分布,期极端之较多,具有厚尾现象。
ARCH模型
ARCH模型认为模型的序列值波动与其过去p期的波动有关。模型表达式为:
ϵ t = σ t u t σ t 2 = α 0 + α 1 ϵ t − 1 2 + . . . + α p ϵ t − p 2 \epsilon_t=\sigma_t u_t \\\sigma_t^2=\alpha_0+\alpha_1\epsilon_{t-1}^2+...+\alpha_p\epsilon_{t-p}^2 ϵt=σtutσt2=α0+α