ARCH模型以及编程实现

本文详细介绍了ARCH模型和GARCH模型的理论基础,包括模型的引入、异方差性检验(Q检验和LM检验)、模型的构建以及MATLAB中的实现方法。通过对残差序列的检验,建立ARIMA-GARCH模型,以适应具有条件异方差的时间序列数据。文章还展示了如何在MATLAB中进行残差异方差性检验以及构建GARCH模型的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARCH模型以及编程实现

ARCH模型的引入

传统的ARIMA模型拟合非平稳时间序列,残差序列 { ε t } \{\varepsilon_t\} { εt}通常满足下面的三个假定条件

  1. 零均值
    E ( ε t ) = 0 E(\varepsilon_t)=0 E(εt)=0

  2. 纯随机
    C o v ( ε t , ε t − i ) = 0 , ∀ i ≥ 1 Cov(\varepsilon_t,\varepsilon_{t-i})=0,\forall i\ge1 Cov(εt,εti)=0,i1

  3. 方差齐性
    V a r ( ε t ) = σ t 2 Var(\varepsilon_t)=\sigma_t^2 Var(εt)=σt2

传统的ARIMA模型假定时间序列的长期方差是相同的,但是,通常情况下,时间序列的存在异方差的,即
V a r ( ε t ) = h ( t ) Var(\varepsilon_t)=h(t) Var(εt)=h(t)
根据以上条件,我们可以得出,残差序列的方差就是它平方的期望,即
V a r ( ε t ) = E ( ε t 2 ) Var(\varepsilon_t)=E(\varepsilon_t^2) Var(εt)=E(εt2)

我们可以根据残差平方图 ε t \varepsilon_t εt关于 t t t变化的二维坐标图,对方差齐性直观判断。

我们对存在异方差的时间序列有两种处理方式

1.如果已知异方差函数具体形式,进行方差齐性变化

2.如果不知异方差函数具体形式,拟合条件异方差模型,即ARCH

异方差性检验

Q检验

原假设 H 0 : H_0: H0:残差平方序列纯随机,即 ρ 1 = ρ 2 = ⋯ = ρ q = 0 \rho_1=\rho_2=\dots=\rho_q=0 ρ1=ρ2==ρq=0
备择假设 H 1 : H_1: H1:残差平方序列具有自相关性,即 ρ 1 , ρ 2 , … , ρ q \rho_1,\rho_2,\dots,\rho_q ρ1,ρ2,,ρq不全为 0 0 0

检验统计量
Q ( q ) = n ( n + 2 ) ∑ i = 1 q ρ i 2 n − i Q(q)=n(n+2)\sum_{i=1}^{q}\frac{\rho_i^2}{n-i} Q(q)=n(n+2)i=1qniρi2

其中, n n n为观察序列长度, ρ i \rho_i ρi为残差序列延迟i的自相关系数,设

σ ^ 2 = ∑ i = 1 n ε i 2 n \hat{\sigma}^2=\frac{\sum_{i=1}^n\varepsilon_i^2}{n} σ^2=ni=1nεi2


ρ i = ∑ t − i = 1 n ( ε t 2 − σ ^ 2 ) ( ε t − i 2 − σ ^ 2 ) ∑ t = 1 n ( ε t 2 − σ ^ 2 ) 2 \rho_i=\sqrt{\frac{\sum_{t-i=1}^{n}(\varepsilon_t^2-\hat{\sigma}^2)(\varepsilon_{t-i}^2-\hat{\sigma}^2)}{\sum_{t=1}^n(\varepsilon_t^2-\hat{\sigma}^2)^2}} ρi=t=1n(εt2σ^2)2ti=1n(εt2σ^2)(εti2σ^

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Logistic..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值