文章目录
ARCH模型以及编程实现
ARCH模型的引入
传统的ARIMA模型拟合非平稳时间序列,残差序列 { ε t } \{\varepsilon_t\} { εt}通常满足下面的三个假定条件
-
零均值
E ( ε t ) = 0 E(\varepsilon_t)=0 E(εt)=0 -
纯随机
C o v ( ε t , ε t − i ) = 0 , ∀ i ≥ 1 Cov(\varepsilon_t,\varepsilon_{t-i})=0,\forall i\ge1 Cov(εt,εt−i)=0,∀i≥1 -
方差齐性
V a r ( ε t ) = σ t 2 Var(\varepsilon_t)=\sigma_t^2 Var(εt)=σt2
传统的ARIMA模型假定时间序列的长期方差是相同的,但是,通常情况下,时间序列的存在异方差的,即
V a r ( ε t ) = h ( t ) Var(\varepsilon_t)=h(t) Var(εt)=h(t)
根据以上条件,我们可以得出,残差序列的方差就是它平方的期望,即
V a r ( ε t ) = E ( ε t 2 ) Var(\varepsilon_t)=E(\varepsilon_t^2) Var(εt)=E(εt2)
我们可以根据残差平方图 ε t \varepsilon_t εt关于 t t t变化的二维坐标图,对方差齐性直观判断。
我们对存在异方差的时间序列有两种处理方式
1.如果已知异方差函数具体形式,进行方差齐性变化
2.如果不知异方差函数具体形式,拟合条件异方差模型,即ARCH
异方差性检验
Q检验
原假设 H 0 : H_0: H0:残差平方序列纯随机,即 ρ 1 = ρ 2 = ⋯ = ρ q = 0 \rho_1=\rho_2=\dots=\rho_q=0 ρ1=ρ2=⋯=ρq=0
备择假设 H 1 : H_1: H1:残差平方序列具有自相关性,即 ρ 1 , ρ 2 , … , ρ q \rho_1,\rho_2,\dots,\rho_q ρ1,ρ2,…,ρq不全为 0 0 0
检验统计量
Q ( q ) = n ( n + 2 ) ∑ i = 1 q ρ i 2 n − i Q(q)=n(n+2)\sum_{i=1}^{q}\frac{\rho_i^2}{n-i} Q(q)=n(n+2)i=1∑qn−iρi2
其中, n n n为观察序列长度, ρ i \rho_i ρi为残差序列延迟i的自相关系数,设
σ ^ 2 = ∑ i = 1 n ε i 2 n \hat{\sigma}^2=\frac{\sum_{i=1}^n\varepsilon_i^2}{n} σ^2=n∑i=1nεi2
则
ρ i = ∑ t − i = 1 n ( ε t 2 − σ ^ 2 ) ( ε t − i 2 − σ ^ 2 ) ∑ t = 1 n ( ε t 2 − σ ^ 2 ) 2 \rho_i=\sqrt{\frac{\sum_{t-i=1}^{n}(\varepsilon_t^2-\hat{\sigma}^2)(\varepsilon_{t-i}^2-\hat{\sigma}^2)}{\sum_{t=1}^n(\varepsilon_t^2-\hat{\sigma}^2)^2}} ρi=∑t=1n(εt2−σ^2)2∑t−i=1n(εt2−σ^2)(εt−i2−σ^