6.13 Fire(法尔)码是常用于检测或纠正突发差错的(n,k)循环码,其生成多项式
g(x)为
g(x)?(xl?1)?p(x) 其中p(x)为次数m(次数m与l互素)的不可约多项式,即p(x)不能分解为次数更低的多项式的乘积。
(1)证明Fire码码长n?LCM(l, 2m?1),这里LCM(a,b)表示a,b两数的最小公倍
数。
(2)证明Fire码可以检测出长度b?l?m的单个突发差错。 证明提示(参考第12题)。
6.14 以太网协议所用的CRC码是生成多项式g(x)如下的二进制码
g(x)?x32?x26?x23?x22?x16?x12?x11?x10?x8?x7?x5?x4?x2?x?1
(1)估计该码的不可检差错概率。
(2)如果分组长度限制为1024,如何改造此码最佳? 解题提示:
(1)不可检错概率?2?32。
6.15 ATM协议对帧头4字节(32比特)地址和路由信息校验所用的8比特CRC
码生成多项式为g(x)
g(x)?x8?x2?x?1
在实际应用中是以此码构造一个最小码距为d?4的(40,32)码,讨论其构造方法。 解题提示:利用循环码缩短方法。
6.16 对如下由子生成元或生成序列确定的(A)(B)(C)(D)4个卷积码, (A)g(1,1)?(10), g(1,2)?(11),
), (B)g(1,1)?(110), g(1,2)?(101(C)g(1,1)?(111), g(1,2)?(111), g(1,3)?(101),
(D)g(1,1)?(10), g(1,2)?(00), g(1,3)?(01),g(2,1)?(11), g(2,2)?(10), g(2,3)?(10) 分别做
31
(1)求多项式生成矩阵G(x),生成矩阵G?,渐进编码效率R,约束长度K,状
态数M。
(2)画出简化型的编码电路图。 (3)画出开放型的状态转移图,栅格图。 (4)求自由距离df。
(5)求消息u?(100110)的卷积码码字序列v?(v0,v1,v2,?)。 (6)在栅格图上画出消息u?(100110)的编码路径。 解题提示: (1)
(A)G(x)??1 1?x?,R=1/2,K?m?1?2,M?2,
23?RK?m?1?31?x 1?xM?2?8, (B)G(x)??,=1/2,,?? 01 ? ?11 01 ??? ??11 10 ???? G(1B?00 11 1? 01 G?(1-A)??00 11 01 ??? -?)???0 ???????? ? ? ?? ???? ? ? ? ?????? ? (2)简化型的编码电路图见题图(16-1A)和题图(16-1B)
v1u1+v1u1+v2+v2
题图(16-1A) 题图(16-1B)
(3)开放型的状态转移图和栅格图见题图(16-2A1)、图(16-2A2)和题图(16-2B1)图(16-2B2)。
(00/0,11/1)S0S0'(01/0,10/1)S1S1' 题图(16-2A1)
32
0S01234(00,11)S1(01,10)
题图(16-2A2)
(00/0,11/1)S0S0'(01/0,10/1)S1S1'(10/0,01/1)S2S2'(11/0,00/1)S3S3'
4题图(16-2B1)
S00(00,11)123S1(01,10)S2(10,00)S3(11,00)
题图(16-2B2)
(4)自由距离分别为:A-3,B-4,C-8,D-2。
(5)考虑补零,A:11 01 00 11 10 01;B:11 10 01 11 01 11 01。
6.17 举例说明(16)题(B)码是一个恶性码,即少数差错可能导致无穷多差错。 解题提示:考查寄存器状态为全1时输入导致的输出。
33
6.18 对题图(18)中的(A),(B)两卷积码分别做
消息u(x)
消息u(x) 码字v(x)
码字v1(x) 码字v2(x) 题图(6.18-A) 题图(6.18-B)
(1)求卷积码的生成序列g(i,j),多项式生成矩阵G(x),生成矩阵G?,渐进编码
效率R,约束长度K,状态数M。 (2)求自由距离df。
(3)画出开放型的状态转移图,栅格图。
)的卷积码码字序列v?(v0,v1,v2,?)。 (4)求消息u?(100110)的编码路径。 (5)在栅格图上画出消息u?(100110)的相应码字序列v?(v0,v1,v2,?)在BSC上传送,差错图案(6)若消息u?(100110?与u?。 ?),给出Viterbi译码的译码过程和输出v是e?(1000000(7)判断是否是恶性码。
解题提示:
R??1,G(x)?1?x,(1-A)g(1,1)?(11),,K?1?1?2, nA?2n?2?1?2,M?21?2。
kn?11 00 ??? G???00 11 00 ?????? ? ???(2-A)自由距离为2。
6.19 第三代移动通信(3GPP)建议的12码率,约束长度K?9的卷积码(G(x)八进
制表示)为
g(1,1)(x)?(561)8 , g(1,2)(x)?(753)8 (1)写出此码的G(x)正规多项式表示式,求状态数M。 (2)画出此码的电路图。
(3)求此码的标准Viterbi译码在一个时隙内要做的ACS操作数。
34
(4)若信道为转移概率p?10?3的BSC,估计采用此码和Viterbi译码后的误码率。 (5)若信道采用的调制方式为双极PSK,估计信道转移概率为p?10?3时的编码
增益。 解题提示:
(1)g(1,1)(x)?(561)8 , g(1,2)(x)?(753)8
g(1,1)(x)?(101110001)2?1+x2+x3+x4+x8 ,g(1,2)(x)?(111101011)2?1?x?x?x?x?x?x23578
234823578?G?x???1+x+x+x+x1?x?x?x?x?x?x??
(2)
DD+++D++D+DDDD++++
(3)译码深度L?10?n??m?1?比特
6.20 解释卷积码译码(如Viterbi译码)为什么在译码端所用的记忆单元数越多(大
大于发送端的记忆单元数),则获得的译码差错概率越小(越逼近理想最佳的最大似然译码)。 解题提示:当译码译码端所用的记忆单元数大于发送端的记忆单元数时,译
码序列就有充足的空间回到全零状态,如果发生错误译码,则错误序列也会汇合到全零状态。
35