画出多项式的硬件编码_信息编码习题答案或提示 -

本文介绍了Fire码的性质,包括码长与最小公倍数的关系,以及检测突发差错的能力。同时,探讨了以太网协议的CRC码不可检差错概率,并讨论了ATM协议的CRC码构造方法。接着,详细分析了四个卷积码的多项式生成矩阵、编码电路、状态转移图和自由距离,展示了卷积码在编码和译码过程中的应用。最后,通过具体例子解释了恶性码的概念及其影响,并讨论了3GPP建议的卷积码在BSC和双极PSK信道下的性能。
摘要由CSDN通过智能技术生成

6.13 Fire(法尔)码是常用于检测或纠正突发差错的(n,k)循环码,其生成多项式

g(x)为

g(x)?(xl?1)?p(x) 其中p(x)为次数m(次数m与l互素)的不可约多项式,即p(x)不能分解为次数更低的多项式的乘积。

(1)证明Fire码码长n?LCM(l, 2m?1),这里LCM(a,b)表示a,b两数的最小公倍

数。

(2)证明Fire码可以检测出长度b?l?m的单个突发差错。 证明提示(参考第12题)。

6.14 以太网协议所用的CRC码是生成多项式g(x)如下的二进制码

g(x)?x32?x26?x23?x22?x16?x12?x11?x10?x8?x7?x5?x4?x2?x?1

(1)估计该码的不可检差错概率。

(2)如果分组长度限制为1024,如何改造此码最佳? 解题提示:

(1)不可检错概率?2?32。

6.15 ATM协议对帧头4字节(32比特)地址和路由信息校验所用的8比特CRC

码生成多项式为g(x)

g(x)?x8?x2?x?1

在实际应用中是以此码构造一个最小码距为d?4的(40,32)码,讨论其构造方法。 解题提示:利用循环码缩短方法。

6.16 对如下由子生成元或生成序列确定的(A)(B)(C)(D)4个卷积码, (A)g(1,1)?(10), g(1,2)?(11),

), (B)g(1,1)?(110), g(1,2)?(101(C)g(1,1)?(111), g(1,2)?(111), g(1,3)?(101),

(D)g(1,1)?(10), g(1,2)?(00), g(1,3)?(01),g(2,1)?(11), g(2,2)?(10), g(2,3)?(10) 分别做

31

(1)求多项式生成矩阵G(x),生成矩阵G?,渐进编码效率R,约束长度K,状

态数M。

(2)画出简化型的编码电路图。 (3)画出开放型的状态转移图,栅格图。 (4)求自由距离df。

(5)求消息u?(100110)的卷积码码字序列v?(v0,v1,v2,?)。 (6)在栅格图上画出消息u?(100110)的编码路径。 解题提示: (1)

(A)G(x)??1 1?x?,R=1/2,K?m?1?2,M?2,

23?RK?m?1?31?x 1?xM?2?8, (B)G(x)??,=1/2,,?? 01 ? ?11 01 ??? ??11 10 ???? G(1B?00 11 1? 01 G?(1-A)??00 11 01 ??? -?)???0 ???????? ? ? ?? ???? ? ? ? ?????? ? (2)简化型的编码电路图见题图(16-1A)和题图(16-1B)

v1u1+v1u1+v2+v2

题图(16-1A) 题图(16-1B)

(3)开放型的状态转移图和栅格图见题图(16-2A1)、图(16-2A2)和题图(16-2B1)图(16-2B2)。

(00/0,11/1)S0S0'(01/0,10/1)S1S1' 题图(16-2A1)

32

0S01234(00,11)S1(01,10)

题图(16-2A2)

(00/0,11/1)S0S0'(01/0,10/1)S1S1'(10/0,01/1)S2S2'(11/0,00/1)S3S3'

4题图(16-2B1)

S00(00,11)123S1(01,10)S2(10,00)S3(11,00)

题图(16-2B2)

(4)自由距离分别为:A-3,B-4,C-8,D-2。

(5)考虑补零,A:11 01 00 11 10 01;B:11 10 01 11 01 11 01。

6.17 举例说明(16)题(B)码是一个恶性码,即少数差错可能导致无穷多差错。 解题提示:考查寄存器状态为全1时输入导致的输出。

33

6.18 对题图(18)中的(A),(B)两卷积码分别做

消息u(x)

消息u(x) 码字v(x)

码字v1(x) 码字v2(x) 题图(6.18-A) 题图(6.18-B)

(1)求卷积码的生成序列g(i,j),多项式生成矩阵G(x),生成矩阵G?,渐进编码

效率R,约束长度K,状态数M。 (2)求自由距离df。

(3)画出开放型的状态转移图,栅格图。

)的卷积码码字序列v?(v0,v1,v2,?)。 (4)求消息u?(100110)的编码路径。 (5)在栅格图上画出消息u?(100110)的相应码字序列v?(v0,v1,v2,?)在BSC上传送,差错图案(6)若消息u?(100110?与u?。 ?),给出Viterbi译码的译码过程和输出v是e?(1000000(7)判断是否是恶性码。

解题提示:

R??1,G(x)?1?x,(1-A)g(1,1)?(11),,K?1?1?2, nA?2n?2?1?2,M?21?2。

kn?11 00 ??? G???00 11 00 ?????? ? ???(2-A)自由距离为2。

6.19 第三代移动通信(3GPP)建议的12码率,约束长度K?9的卷积码(G(x)八进

制表示)为

g(1,1)(x)?(561)8 , g(1,2)(x)?(753)8 (1)写出此码的G(x)正规多项式表示式,求状态数M。 (2)画出此码的电路图。

(3)求此码的标准Viterbi译码在一个时隙内要做的ACS操作数。

34

(4)若信道为转移概率p?10?3的BSC,估计采用此码和Viterbi译码后的误码率。 (5)若信道采用的调制方式为双极PSK,估计信道转移概率为p?10?3时的编码

增益。 解题提示:

(1)g(1,1)(x)?(561)8 , g(1,2)(x)?(753)8

g(1,1)(x)?(101110001)2?1+x2+x3+x4+x8 ,g(1,2)(x)?(111101011)2?1?x?x?x?x?x?x23578

234823578?G?x???1+x+x+x+x1?x?x?x?x?x?x??

(2)

DD+++D++D+DDDD++++

(3)译码深度L?10?n??m?1?比特

6.20 解释卷积码译码(如Viterbi译码)为什么在译码端所用的记忆单元数越多(大

大于发送端的记忆单元数),则获得的译码差错概率越小(越逼近理想最佳的最大似然译码)。 解题提示:当译码译码端所用的记忆单元数大于发送端的记忆单元数时,译

码序列就有充足的空间回到全零状态,如果发生错误译码,则错误序列也会汇合到全零状态。

35

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值