区间比较_「高等数学」比较定积分的大小,常用方法是比较被积函数的大小

博客介绍了定积分是函数在区间上积分和的极限,与不定积分有区别。重点讲解同一区间上定积分大小比较,通过实例说明可比较被积函数大小得出结果,如比较M、N、K三个式子,得出K>M>N,还给出解决步骤和例题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定积分:积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

与不定积分的区别:定积分是一个确定的数值,而不定积分是一个函数表达式,它们两者仅仅只存在牛顿-莱布尼兹公式的数学关系,其它什么关系都没有,要特别注意!

正如定积分的概念所说,x的范围是在区间[a,b]上,然后求一个极限,我们今天要做的事比较定积分的大小。

7e6f8b4ae53d73a3a706ebca6f6fc341.png

图一

如图所示,已知三个关于定积分的式子,比较一下这三个定积分的大小,当我们拿到比较大小的时候,最好能够将三个式子和一个共同的式子比较大小,或者将其中的一个式子解出来,让那个另外两个式子和该式子比较大小,也就是比较被积函数的大小,最后得出结果。

M、N、K三个式子的区间都在[-2/π,2/π]之间。

我们先来看M,对于M这个式子而言,共有的是1+x^2,因此我们将分子化开,将公共部分约调,根据1的反函数是x,2x/(1+x^2)的反函数是ln(1+x^2)最后得到M的结果为π,所以可以得到M即为求函数1在[-2/π,2/π]的极限和。

再来看N,由于1+x

最后来看K,由于1+根号cosx>1,可以得到该式子的极限和大于1,说明K>M。

得到:K>M>N。

给出解决步骤:

e0adb070860690f869b46ac5d7793403.png

图二

总结:同一区间上定积分大小比较最常用的思想就是比较被积函数的大小。

注意点:同一区间、被积函数的大小。

再给出一道例题:

2bee8a78eb2d02602d5b6c7c28b4ce5c.png

图三

对于这道例题而言,就更加简单了,lnx是已知在正区间上是单调递增的,那么比较一下sinx、cotx和cosx的大小,可以知道在[0,π/4]区间上0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值