【深度学习】迭代次数 vs bs? 迭代次数 vs epoch

在深度学习的训练过程中,迭代次数(iterations)、批次大小(batch size)和周期(epoch)是三个重要的概念,它们之间有密切的关系。以下是对这些概念及其关系的详细解释:

1. 批次大小(Batch Size)

批次大小是指在一次前向和后向传播中,模型处理的样本数量。批次大小的选择会影响训练的稳定性和速度:

  • 小批次大小:更频繁地更新模型参数,可以更快地找到好的方向,但会导致更高的噪声和不稳定性。
  • 大批次大小:每次更新模型参数时有更准确的梯度估计,但更新频率较低,训练时间可能更长。

2. 迭代次数(Iterations)

迭代次数是指模型在训练过程中更新参数的次数。每次迭代,模型处理一个批次的样本并更新参数。迭代次数的计算公式为:
在这里插入图片描述

[ \text{Iterations per epoch} = \frac{\text{Number of training samples}}{\text{Batch size}} ]

3. 周期(Epoch)

一个周期(epoch)是指模型已经看过所有训练样本一次。换句话说,一个周期意味着模型已经完成了一轮完整的训练数据集的遍历。周期的数量通常用来衡量训练的进展。

关系总结

  1. 迭代次数和批次大小的关系

    • 每次迭代处理一个批次(batch size)的样本。
    • 一个周期内的迭代次数等于训练集的样本数量除以批次大小。
  2. 迭代次数和周期的关系

    • 一个周期内的迭代次数为:
      在这里插入图片描述
      [ \text{Iterations per epoch} = \frac{\text{Number of training samples}}{\text{Batch size}} ]

    • 总的迭代次数(Total iterations)等于每个周期的迭代次数乘以周期数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值