【推荐系统】电影推荐项目系统设计

本文详细介绍了基于movieLens数据集构建的电影推荐系统架构,包括数据集介绍、主要数据模型设计、统计推荐模块和离线推荐模块。通过分析历史热门电影、近期热门电影和各类别Top10评分电影,结合ALS算法训练隐语义模型,为用户提供个性化电影推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系统模块设计

项目系统架构

细化

细化

数据集

使用的是movieLens数据集,

movies.csv 电影信息

ratings.csv 用户评分信息

tags.csv 用户给电影所打的标签信息

电影信息

  

用户评分信息

主要数据模型(对应BI模型?)

统计推荐模块

历史热门电影统计

统计所有历史数据中每个电影的评分数(RateMoreMovies)

select mid, count(mid) as count from ratings group by mid

近期热门电影统计

统计每月的电影评分个数,代表了电影近期的热门度(RatingofMonth)

select mid, score, changeDate(timestamp) as yearmonth from ratings

 

select mid, count(mid) as count ,yearmonth from ratingOfMonth group by
yearmonth,mid order by yearmonth desc,count desc

各类别 Top10 评分电影统计

 

离线推荐模块

用ALS训练隐语义模型

 

 

计算用户推荐矩阵(这里又忘记了)

 

计算电影相似度矩阵(again!)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值