1、
tf.test.is_gpu_available(
cuda_only=False,
min_cuda_compute_capability=None
)
# 简化一点
print("is_gpu: ", tf.test.is_gpu_available())
2、
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 查看日志信息若包含gpu信息,就是使用了gpu
3、nvidia-smi
-
GPU:本机中的GPU编号
-
Name:GPU 类型
-
Persistence-M:
-
Fan:风扇转速
-
Temp:温度,单位摄氏度
-
Perf:表征性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能
-
Pwr:Usage/Cap:能耗表示
-
Bus-Id:涉及GPU总线的相关信息;
-
Disp.A:Display Active,表示GPU的显示是否初始化
-
Memory-Usage:显存使用率
-
Volatile GPU-Util:浮动的GPU利用率
-
Uncorr. ECC:关于ECC的东西
-
Compute M.:计算模式
-
Processes 显示每块GPU上每个进程所使用的显存情况。
参考:
https://link.zhihu.com/?target=https%3A//www.tensorflow.org/api_docs/python/tf/test/is_gpu_available