【Tensorflow】tf查看是否使用gpu

1、

tf.test.is_gpu_available(
    cuda_only=False,
    min_cuda_compute_capability=None
)

# 简化一点
print("is_gpu: ", tf.test.is_gpu_available())

2、

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 查看日志信息若包含gpu信息,就是使用了gpu

3、nvidia-smi

  • GPU:本机中的GPU编号

  • Name:GPU 类型

  • Persistence-M:

  • Fan:风扇转速

  • Temp:温度,单位摄氏度

  • Perf:表征性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能

  • Pwr:Usage/Cap:能耗表示

  • Bus-Id:涉及GPU总线的相关信息;

  • Disp.A:Display Active,表示GPU的显示是否初始化

  • Memory-Usage:显存使用率

  • Volatile GPU-Util:浮动的GPU利用率

  • Uncorr. ECC:关于ECC的东西

  • Compute M.:计算模式

  • Processes 显示每块GPU上每个进程所使用的显存情况。

 

参考:

https://link.zhihu.com/?target=https%3A//www.tensorflow.org/api_docs/python/tf/test/is_gpu_available

https://blog.csdn.net/C_chuxin/article/details/82993350

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值