这个博主把这些题目归纳到简单基础dp里了,主要包括递推、背包、LIS(最长递增序列),LCS(最长公共子序列)。面向找工作编程,我也只会这几种就好了。
目录
背包(选or不选的问题)
背包问题可以概括为这样的模型:有若干种选择,每种选择有一定的代价和价值,做某些选择会得到特定的状态,问我们在约定的条件下怎么得到特定的状态?这里的状态可以是代价和或者价值和或者由其他这两者组合而来的状态。这类问题需要枚举每种状态,但是可以通过动态规划减少枚举的次数,提高效率,主要思想是每次都利用前面得到的状态进行转移得到当前的状态。这类问题很少能用贪心的,首先,贪心很难证明策略是否正确,其次贪心必定使得枚举量大量减少,会导致结果错误。
一、01背包
二、多重背包
多重背包优化前,二维
等式,先算右边,再算左边。
优化后,一维
三、区间DP【石子合并】
f[i][j] 状态表示: 所有将 [i, j] 合并成一堆的方案的集合。
1000. 合并石头的最低成本 O(N^3)
最后一定是将左边某一段和右边某一段进行合并。f[i][k] 如下,左边 [i,k], 右边 [k+1, j]。
先枚举区间长度,再枚举区间左端点。
四、二维dp 【1143. 最长公共子序列】
子序列不用连续!
重点就是状态表示的定义!
在每个情况下,求每一个的最大值。
11 01
求解最大值,可以重复。最后,整体的状态如下,
f[i][j],所有从a[1-i], b[1-j]中,公共子序列的最大值。注意这里是1~i的下标。实际操作0~(i-1)方便一点。
求最大值,有四种情况:
- a[i] 和 b[j] 都不包含,f[i][j] = f[i-1][j-1]。
- a[i] 不包含,b[j] 包含,f[i][j] = f[i-1][j]。 从b的1-j中挑选,所以包含j选和不选两种情况。但是求得是最大值,所以木关系。
- a[i] 包含,b[j] 不包含,f[i][j] = f[i][j-1]。
- a[i] 和 b[j] 都包含,f[i][j] = f[i-1][j-1]+1。
C++代码如下,
Python ac代码:
定义稍微有些不一样。# dp[i][j], 所有text1[0~(i-1)], text2[0~(j-1)]的公共子序列集合,max。
def longestCommonSubsequence(self, text1, text2):
if not text1 or not text2:return 0
n, m = len(text1), len(text2)
# n,m
# dp[i][j], 所有text1[0-(i-1)], text2[0-(j-1)]的公共子序列集合,max。
dp = [[0] * (m + 1) for _ in range(n + 1)]
for i in range(1, n+1):
for j in range(1, m+1):
# 举个例子,比如对于 ace 和 bc 而言,
# 他们的最长公共子序列的长度等于 ① ace 和 b 的最长公共子序列长度0;
# ② ac 和 bc 的最长公共子序列长度1 的最大值,即 1。
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
if text1[i-1]==text2[j-1]:
dp[i][j] = max(dp[i][j], dp[i-1][j-1]+1)
return dp[n][m]
注意,套路又来啦~
求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。下面的题解并不难,你肯定能看懂。
首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;
另外,动态规划也是有套路的:单个数组或者字符串要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;
当两个数组或者字符串要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i] 与 B[0:j] 之间匹配得到的想要的结果。
链接
内容来源:
1、https://www.bilibili.com/video/BV1X741127ZM/?spm_id_from=333.788.recommend_more_video.5 (视频课)
1、【DP专辑】ACM动态规划总结 里面有各种dp。
2、【DP_背包专辑】【10.14最新更新】acmer吧,总结了很多关于poj、hdu的题目。