摘要注释_Arxiv网络科学论文摘要12篇(2020-09-25)

  • 识别针对连续攻击的网络系统临界点预警指标;
  • 几何图的高阶谱聚类;
  • 用于网络可视化的在线非均匀分时方法;
  • EPNE:保留演化模式的网络嵌入;
  • 管理数据注释项目的最佳实践;
  • COVID-19的人力和财务成本;
  • 利用生成对抗网络的图稀疏化;
  • 揭露大型工程项目网络的脆弱性;
  • 演化网络中基于草图的社区检测;
  • 气候变化对天文观测的影响;
  • 天文研究所对应对气候危机挑战的看法;
  • 大型天文学会议的碳足迹;

识别针对连续攻击的网络系统临界点预警指标

原文标题: Identifying early-warning indicators of tipping points in networked systems against sequential attacks

地址: http://arxiv.org/abs/2009.11322

作者: Utkarsh Gangwal, Udit Bhatia, Mayank Singh, Pradyumn Kumar Pandey, Deepak Kamboj, Samrat Chatterjee

摘要: 诸如社会网络,交通,电力和供水基础设施以及生物和生态系统之类的广泛系统中的网络结构可能会显示出临界阈值或临界点,超过临界阈值或临界点,系统功能将遭受不成比例的损失。引爆点和此类系统的故障容忍度日益引起人们的关注,因为引爆点可能会导致预期功能突然丧失,并可能导致不可恢复的状态。尽管已经对网络系统的攻击容忍度进行了深入研究,以研究源于单个故障点的破坏,但在某些情况下,现实世界中的系统可能会在多个位置同时发生或突然发生并发破坏。使用来自美国空域机场网络和印度铁路网络以及随机网络作为系统原型类别的开源数据,我们研究了它们对各种规模的综合攻击策略的响应。对于这两种类型的网络,我们观察到警告区域的存在,它们是临界点的先兆。此外,我们观察到网络健壮性与同时分发的大小之间的统计上显著的关系,这可以概括为随机故障和针对性攻击具有不同拓扑属性的网络。我们证明了我们的方法可以确定不同规模的网络在遭受大小变化的干扰时的整体鲁棒性特征。我们的方法可以用作理解真实系统中临界点的范例,并且该原理可以扩展到其他学科,以解决风险管理和弹性的关键问题。

几何图的高阶谱聚类

原文标题: Higher-Order Spectral Clustering for Geometric Graphs

地址: http://arxiv.org/abs/2009.11353

作者: Konstantin Avrachenkov, Andrei Bobu, Maximilien Dreveton

摘要: 本文致力于聚类几何图。虽然标准谱聚类通常对几何图无效,但我们提出了一种有效的概括,我们称之为高阶谱聚类。它在概念上类似于经典的谱聚类方法,但用于划分与高阶特征值相关的特征向量。我们为一类称为软几何块模型的几何图建立了该算法的弱一致性。对该算法进行少量调整即可提供强大的一致性。我们还表明,即使对于中等大小的图,我们的方法在数值实验中也是有效的。

用于网络可视化的在线非均匀分时方法

原文标题: An Online and Nonuniform Timeslicing Method for Network Visualisation

地址: http://arxiv.org/abs/2009.11422

作者: Jean R. Ponciano, Claudio D. G. Linhares, Elaine R. Faria, Bruno A. N. Travencolo

摘要: 时态网络的可视化分析是了解网络动态性的有效方法,有助于识别模式,异常和其他网络属性,从而快速做出决策。但是,由于边重叠,实际网络中的数据量可能会导致布局具有很高的视觉混乱度。这在所谓的流网络中尤其重要,在流网络中,边连续到达(在线)并且处于非平稳分布。可以控制所有三个网络维度,即节点,边和时间,以减少此类混乱并提高可读性。本文提出了一种在线且非均匀的分时方法,从而考虑了底层网络结构并解决了流网络分析问题。我们使用两个真实世界的网络进行了实验,以比较我们的方法与统一和不统一的时间分配策略。结果表明,我们的方法会自动选择可在事件突发期间有效减少视觉混乱的时间片。结果,基于全局时间模式识别的决策变得更快,更可靠。

EPNE:保留演化模式的网络嵌入

原文标题: EPNE: Evolutionary Pattern Preserving Network Embedding

地址: http://arxiv.org/abs/2009.11510

作者: Junshan Wang, Yilun Jin, Guojie Song, Xiaojun Ma

摘要: 信息网络无处不在,是建模关系数据的理想选择。网络稀疏和不规则,网络嵌入算法引起了许多研究人员的注意,他们提出了许多静态网络中的嵌入算法。然而在现实生活中,网络会随着时间不断发展。因此,演化模式,即节点随着时间的发展如何发展,将成为嵌入网络中静态结构的有力补充,而静态网络的工作很少。在本文中,我们提出了EPNE,这是一种时态网络嵌入模型,可以保留节点局部结构的演化模式。特别是,我们分析了具有和不具有周期性的演化模式,并设计了相应的设计策略,以便基于因果卷积在时频域中对这种模式进行建模。此外,我们提出了一种时间目标函数,该函数与邻近函数同时进行了优化,从而保留了时间和结构信息。通过适当的时间信息建模,我们的模型能够在各种预测任务中胜过其他竞争方法。

管理数据注释项目的最佳实践

原文标题: Best Practices for Managing Data Annotation Projects

地址: http://arxiv.org/abs/2009.11654

作者: Tina Tseng, Amanda Stent, Domenic Maida

摘要: 注释是通过人工来标记数据。批注对于现代机器学习至关重要,并且彭博社已经积累了多年的批注经验。该报告从彭博全球数据部门的30多位经验丰富的注释项目经理那里收集了应用注释项目的丰富智慧。

COVID-19的人力和财务成本

原文标题: Human and financial cost of COVID-19

地址: http://arxiv.org/abs/2009.11660

作者: Nick James, Max Menzies

摘要: 本文分析了92个国家/地区COVID-19大流行的人力和财务成本。我们将各国股票市场动态与累积COVID-19病例和死亡人数以及新病例轨迹进行比较。首先,我们研究了累积病例和死亡的多元时间序列,特别是关于其随时间变化的结构。我们揭示了病例和死亡时间序列以及时间序列结构改变的关键日期之间的相似性。接下来,我们对新的病例时间序列进行分类,展示轨迹的五种特征类别,并量化它们之间在疾病波行为方面的差异。最后,我们表明,国家的股票市场表现与其成功管理COVID-19之间没有任何关系。每个国家的股指对国内或全球的大流行状况都没有反应。取而代之的是,这些指数是高度统一的,大多数波动发生在3月。

利用生成对抗网络的图稀疏化

原文标题: Graph Sparsification with Generative Adversarial Network

地址: http://arxiv.org/abs/2009.11736

作者: Hang-Yang Wu, Yi-Ling Chen

摘要: 图稀疏化旨在减少网络的边数量,同时保持给定任务的准确性。在这项研究中,我们提出了一种称为GSGAN的新方法,该方法能够稀疏网络以进行社区检测任务。 GSGAN能够刻画原始图中未显示但相对重要的那些关系,并创建人为的边来反映这些关系并进一步提高社区检测任务的效率。我们采用GAN作为学习模型,并指导生成器生成能够刻画网络结构的随机游动。具体而言,在训练阶段,除了判断随机游走的真实性外,鉴别器还同时考虑节点之间的关系。我们设计了一个奖励函数来指导生成器创建包含有用的隐藏关系信息的随机游动。然后将这些随机游走组合起来,以形成一个新的社会网络,该社会网络对于社区检测是有效的。实际网络的实验表明,所提出的GSGAN比基线要有效得多,并且GSGAN可以应用于社区检测的各种聚类算法,并对其有所帮助。

揭露大型工程项目网络的脆弱性

原文标题: Uncovering the fragility of large-scale engineering project networks

地址: http://arxiv.org/abs/2009.11752

作者: Marc Santolini, Christos Ellinas, Christos Nicolaides

摘要: 众所周知,工程项目难以按时完成,通常将理论上的项目延误解释为在相互依存的活动之间传播。在这里,我们使用一个新颖的数据集,该数据集由来自14个不同的大型工程项目的活动网络组成,以揭示影响及时完成项目的网络属性。我们提供了活动偏差的传染性的第一个经验证据,其中单个活动的传递中的扰动会影响多达4个下游的活动,从而导致较大的扰动级联。我们进一步表明,扰动聚类显著影响项目的整体延迟。最后,我们发现效果不佳的项目在高程节点上具有最高的扰动,这可能导致最大的级联,而性能良好的项目在低程节点上具有扰动,从而导致局部级联。总而言之,这些发现为网络科学框架铺平了道路,该框架可以从实质上增强大型工程项目的交付。

演化网络中基于草图的社区检测

原文标题: Sketch-based community detection in evolving networks

地址: http://arxiv.org/abs/2009.11835

作者: Andre Beckus, George K. Atia

摘要: 我们考虑在时变网络中进行社区检测的方法。此方法的核心是维护一个小的草图,以刻画在整个网络的每个快照中发现的基本社区结构。我们演示了如何使用草图来明确识别通常在网络演进过程中发生的六个关键社区事件:增长,收缩,合并,分裂,出生和死亡。基于这些检测技术,我们制定了一种社区检测算法,该算法可以处理同时显示所有过程的网络。基于草图的算法提供的一个优势是对大型网络的有效处理。尽管检测整个图中的事件可能在计算上很昂贵,但是草图的小尺寸允许快速评估更改。第二个优点出现在包含大小不成比例的群集的网络中。构造草图以使每个群集具有相等的表示,从而减少估计中丢失小群集的可能性。我们基于随机块模型提出了一个新的标准化基准,该模型对节点的添加和删除以及社区的诞生和死亡进行建模。与现有基准一起使用时,此新基准将提供涵盖所有六个社区事件的全面测试套件。我们提供了一组数值结果,证明了我们的方法在运行时和处理小型集群方面的优势。

气候变化对天文观测的影响

原文标题: The impact of climate change on astronomical observations

地址: http://arxiv.org/abs/2009.11779

作者: Faustine Cantalloube, Julien Milli, Christoph Böhm, Susanne Crewell, Julio Navarrete, Kira Rehfeld, Marc Sarazin, Anna Sommani

摘要: 气候变化正在影响并将越来越影响天文观测。在本文中,我们调查了一些关键天气参数在天文观测质量中的作用,并分析了它们的长期趋势(超过30年),以便掌握气候变化对当前和未来观测的影响。在这项初步研究中,我们专门分析了四个参数,即温度,表层湍流,射流层的风速和湿度。分析是利用来自欧洲南部天文台(ESO)的超大型望远镜(VLT)的数据进行的,该望远镜位于地球上最干旱的地方之一的智利阿塔卡马沙漠的塞罗帕拉纳尔。为了完善Paranal所安装的各种传感器的数据,我们使用了第五代和20世纪欧洲中心的中程天气预报(ECMWF)对全球气候,ERA5(从1980年到现在)和ERA20C(从1900年到现在)的大气再分析。 2010年),我们在Paranal天文台位置进行了插值。此外,在最坏的气候变化共同社会经济途径(SSP5-8.5)情景下,我们还使用耦合模型比较项目第六阶段(CMIP6)多模型集合探索了该地区的气候预测。需要进行进一步调查,以更好地了解变化的根本机制,并评估影响的严重性。

天文研究所对应对气候危机挑战的看法

原文标题: An astronomical institute’s perspective on meeting the challenges of the climate crisis

地址: http://arxiv.org/abs/2009.11307

作者: Knud Jahnke, Christian Fendt, Morgan Fouesneau, Iskren Georgiev, Tom Herbst, Melanie Kaasinen, Diana Kossakowski, Jan Rybizki, Martin Schlecker, Gregor Seidel, Thomas Henning, Laura Kreidberg, Hans-Walter Rix

摘要: 分析天文研究所的温室气体排放是减少其对环境的影响的第一步。在这里,我们分解了海德堡马克斯·普朗克天文学研究所的排放量,并提出了减少排放的措施。

大型天文学会议的碳足迹

原文标题: The carbon footprint of large astronomy meetings

地址: http://arxiv.org/abs/2009.11344

作者: Leonard Burtscher, Didier Barret, Abhijeet P. Borkar, Victoria Grinberg, Knud Jahnke, Sarah Kendrew, Gina Maffey, Mark J. McCaughrean

摘要: 欧洲天文学会的年会于2019年在法国里昂举行,但由于COVID-19大流行,该会议于2020年在网上举行。虚拟会议的碳足迹大约是面对面会议的碳足迹的3000倍,这为鼓励更具生态意识的会议提供了鼓励。

声明:Arxiv文章摘要版权归论文原作者所有,机器翻译后由本人进行校正整理,未经同意请勿随意转载。本系列在公众号“网络科学研究速递”(netsci)和个人博客进行同步更新。

5366646dc930dcf7a5564c0ed1909eb9.png
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> <strong><span style="font-size:20px;color:#FF0000;">本课程主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者</span></strong> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">1. 包含:<span style="color:#FFFF00;background-color:#FF0000;">项目源码、</span><span style="color:#FFFF00;background-color:#FF0000;">项目文档、数据库脚本、软件工具</span>等所有资料</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">2. 手把手的带你从零开始部署运行本套系统</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">3. 该项目附带的源码资料可作为毕设使用</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">4. 提供技术答疑和远程协助指导</span></strong></span><strong><span style="font-size:18px;"></span></strong> </p> <p> <br /> </p> <p> <span style="font-size:18px;"><strong>项目运行截图:</strong></span> </p> <p> <strong><span style="font-size:18px;">1)系统登陆界面</span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015433522.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">2)学生模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015575966.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">3)教师模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016127898.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">4)系统管理员</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016281177.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016369884.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">更多Java毕设项目请关注我的毕设系列课程 <a href="https://edu.csdn.net/lecturer/2104">https://edu.csdn.net/lecturer/2104</a></span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页