二分类交叉熵损失函数python_二分类问题的交叉熵损失函数多分类的问题的函数交叉熵损失函数求解...

这篇博客介绍了二分类和多分类问题中的交叉熵损失函数。在二分类问题中,损失函数是单个样本损失的平均值;在多分类问题中,损失函数同样基于交叉熵。通过代码示例展示了如何使用sklearn库计算交叉熵损失,并解释了防止概率值为0或1时计算对数的问题。
摘要由CSDN通过智能技术生成

二分类问题的交叉熵损失函数;

在二分类问题中,损失函数为交叉熵损失函数。对于样本(x,y)来讲,x为样本 y为对应的标签。在二分类问题中,其取值的集合可能为{0,1},我们假设某个样本的真实标签为yt,该样本的yt=1的概率为yp,则该样本的损失函数为:

如果对于整个数据集上的模型而言:其损失函数就是所有样本的点的损失函数的平均值。

多分类的问题的函数交叉熵损失函数:

在多分类问题中,损失函数也是交叉熵损失函数,对于样本(x,y)来讲,y是真实的标签,预测标签为所有标签的集合,我们假设有k个标签值,第i个样本预测为第K个标签的概率为pi,k,一共有N个样本,则总的数据集损失函数为:

下面是二分类和多分类问题的代码:利用sklearn库编写

from sklearn.metrics import log_loss

#from sklearn.preprocessing import LabelBinarizer

from math import log

y_true = [0,1]

y_pred = [[.48,.52],[.48,.52]]

sk_log_loss = log_loss(y_true,y_pred)

print('Loss by sklearn: %s.'% sk_log_loss)

loss = 0

for lable,p

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二分类问题中的交叉熵损失函数是一种常用的损失函数,它可以用来衡量模型输出的概率分布与真实标签的差异。其公式如下: $$ J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log(h_{\theta}(x^{(i)}))+(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))] $$ 其中,$m$表示样本数量,$y^{(i)}$表示第$i$个样本的真实标签(0或1),$h_{\theta}(x^{(i)})$表示模型对第$i$个样本的预测概率,$\theta$表示模型的参数。 交叉熵损失函数的含义是,对于每个样本,如果真实标签为1,则希望模型输出的概率也越接近1越好;如果真实标签为0,则希望模型输出的概率也越接近0越好。同时,交叉熵损失函数也具有良好的数学性质,可以通过梯度下降等优化算法来求解模型参数。 下面是一个使用交叉熵损失函数训练二分类模型的示例代码: ```python import numpy as np # 定义sigmoid函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 定义交叉熵损失函数 def cross_entropy_loss(y_true, y_pred): epsilon = 1e-7 # 避免log(0)的情况 return -np.mean(y_true * np.log(y_pred + epsilon) + (1 - y_true) * np.log(1 - y_pred + epsilon)) # 定义模型类 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True): self.lr = lr # 学习率 self.num_iter = num_iter # 迭代次数 self.fit_intercept = fit_intercept # 是否拟合截距 self.theta = None # 模型参数 def fit(self, X, y): if self.fit_intercept: X = np.hstack([np.ones((X.shape[0], 1)), X]) # 添加一列全为1的特征,用于拟合截距 self.theta = np.zeros(X.shape[1]) # 初始化模型参数为0 for i in range(self.num_iter): z = np.dot(X, self.theta) # 计算z值 h = sigmoid(z) # 计算预测概率 gradient = np.dot(X.T, (h - y)) / y.size # 计算梯度 self.theta -= self.lr * gradient # 更新模型参数 def predict_proba(self, X): if self.fit_intercept: X = np.hstack([np.ones((X.shape[0], 1)), X]) # 添加一列全为1的特征,用于拟合截距 return sigmoid(np.dot(X, self.theta)) # 计算预测概率 def predict(self, X, threshold=0.5): return (self.predict_proba(X) >= threshold).astype(int) # 根据阈值将概率转换为类别 # 使用sklearn生成二分类数据集 from sklearn.datasets import make_classification X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42) # 划分训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 model = LogisticRegression(lr=0.1, num_iter=10000) model.fit(X_train, y_train) # 在测试集上评估模型 y_pred = model.predict(X_test) print("Accuracy:", np.mean(y_pred == y_test)) print("Cross-entropy loss:", cross_entropy_loss(y_test, model.predict_proba(X_test))) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值