java使用yolov2_yolo v2 源码分析(一)

本文详细分析了在Java中使用YoloV2进行训练的过程,包括读取配置、解析网络结构、加载权重、调整网络大小、数据增强以及训练循环。重点讲解了train_detector函数,涉及到网络输入尺寸的动态调整,以及如何通过多尺度训练防止过拟合。

detector .c文件,这里仅分析train_detector

void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)

{

list *options = read_data_cfg(datacfg);

char *train_images = option_find_str(options, "train", "data/train.list");

char *backup_directory = option_find_str(options, "backup", "/backup/");

/*srand函数是随机数发生器的初始化函数。srand和rand()配合使用产生伪随机数序列。

rand函数在产生随机数前,需要系统提供的生成伪随机数序列的种子,rand根据这个种子的值产生一系列随机数。

如果系统提供的种子没有变化,每次调用rand函数生成的伪随机数序列都是一样的。*/

srand(time(0));

/*第三个参数是:`cfg/yolo.train.cfg`,`basecfg()`这个函数把`cfg/yolo.train.cfg`

变成了`yolo0train.cfg`,然后用base指针指向`yolo0train.cfg`*/

char *base = basecfg(cfgfile);

printf("%s\n", base); //打印"yolo"字样

float avg_loss = -1;

network *nets = calloc(ngpus, sizeof(network));

srand(time(0));

int seed = rand();

int i;

for(i = 0; i < ngpus; ++i)

{

srand(seed);

#ifdef GPU

cuda_set_device(gpus[i]);

#endif

nets[i] = parse_network_cfg(cfgfile);//解析网络构架,下面会仔细分析该函数

if(weightfile)

{

load_weights(&nets[i], weightfile);//加载预训练参数,下面会仔细分析该函数

}

if(clear) *nets[i].seen = 0;

nets[i].learning_rate *= ngpus;

}

srand(time(0));

network net = nets[0];

/*imgs是一次加载到内存的图像数量,如果占内存太大的话可以把subdivisions调大或者batch调小一点 */

int imgs = net.batch * net.subdivisions * ngpus;

printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

data train, buffer;

layer l = net.layers[net.n - 1];

int classes = l.classes;

float jitter = l.jitter; //jitter是什么意思呢?可以参考这篇博客:[非均衡数据集处理:利用抖动(jittering)生成额外数据]

list *plist = get_paths(train_images);

//int N = plist->size;

char **paths = (char **)list_to_array(plist);

load_args args = {0};

args.w = net.w;

args.h = net.h;

args.paths = paths;

args.n = imgs; //n就是一次加载到内存中的图片数量

args.m = plist->size;//m是待训练图片的总数量

args.classes = classes;

args.jitter = jitter;

args.num_boxes = l.max_boxes;

args.d = &buffer;

args.type = DETECTION_DATA;

args.threads = 8;

//调节图片旋转角度、曝光度、饱和度、色调等,来增加图片数量

args.angle = net.angle;

args.exposure = net.exposure;

args.saturation = net.saturation;

args.hue = net.hue;

pthread_t load_thread = load_data(args);

clock_t time;

int count = 0;

//while(i*imgs < N*120){

while(get_current_batch(net) < net.max_batches)

{

//进行10次迭代后,调整一次网络大小

if(l.random && count++%10 == 0)

{

printf("Resizing\n");

int dim = (rand() % 10 + 10) * 32;//dim为320,352,384,416。。。

if (get_current_batch(net)+100 > net.max_batches)

dim = 544;

//int dim = (rand() % 4 + 16) * 32;

printf("%d\n", dim);

//网络输入图片的宽高可调节,dim最小为320,最大为618,这样可以更好使用多尺度的目标

args.w = dim;

args.h = dim;

pthread_join(load_thread, 0);

train = buffer;

free_data(train);

load_thread = load_data(args);

for(i = 0; i < ngpus; ++i){

resize_network(nets + i, dim, dim);

}

net = nets[0];

}

time=clock();

pthread_join(load_thread, 0);

train = buffer;

load_thread = load_data(args);

printf("Loaded: %lf seconds\n", sec(clock()-time));

time=clock();

float loss = 0;

#ifdef GPU

if(ngpus == 1)

{

loss = train_network(net, train);

}

else

{

loss = train_networks(nets, ngpus, train, 4);//开始训练

}

#else

loss = train_network(net, train); //开始训练

#endif

if (avg_loss < 0) avg_loss = loss;

avg_loss = avg_loss*.9 + loss*.1;

i = get_current_batch(net);

printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);

//每100次或者1000次保存一次权重

if(i%1000==0 || (i < 1000 && i%100 == 0))

{

#ifdef GPU

if(ngpus != 1) sync_nets(nets, ngpus, 0);

#endif

char buff[256];

sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);

save_weights(net, buff);

}

free_data(train);

}

#ifdef GPU

if(ngpus != 1) sync_nets(nets, ngpus, 0);

#endif

char buff[256];

sprintf(buff, "%s/%s_final.weights", backup_directory, base);

save_weights(net, buff);

}

注意

resize网络是yolo v2版本新加的功能。即每进行10次迭代就会resize一次网络输入图片的宽和高,这样保证了网络可以试音各种不同尺度的目标,这样以来,即使没有dropout层,训练出来的网络也不会过拟合。

在imgs = net.batch * net.subdivisions * ngpus中,net.batch并不是cfg文件中的batch值,而是cfg文件中的batch值除以net.subdivisions,这样以来,一次加载imgs张图片到内存,while循环中每次count,就会处理完这些图片,完成一次迭代。比如,cfg文件中的batch为64,subdivisions为16,对应在计算imgs时,net.batch=64/16=4, net.subdivisions =16,因此imgs=64。为什么net.batch并不对应cfg文件中的batch值,请看3。

net在初始化时调用了parse_network_cfg函数,该函数调用parse_net_options,该函数修改了net->batch的值。

net->batch = option_find_int(options, “batch”,1)

int subdivs = option_find_int(options, “subdivisions”,1)

net->batch /= subdivs

net->subdivisions = subdivs

20191102100516_1.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值