多元函数泰勒级数展开_一元及多元函数的泰勒展开式

一. 函数极限方法: 等价代换, 洛必达法则, 泰勒公式, 导数定义, 拉格朗日中值定理

注:

$$

x rightarrow 0时, x-sin x sim frac{1}{6} x^{3}, x-arcsin x sim-frac{1}{6} x^{3}, x-tan x sim-frac{1}{3} x^{3}

$$

$$

x-arctan x sim frac{1}{3} x^{3}, x-ln (1+x) sim frac{1}{2} x^{2}, tan x-sin x sim frac{1}{2} x^{3}, quad e^{x}-1-x sim frac{1}{2} x^{2}

$$

$$

sqrt{1+x}-1-frac{1}{2} x sim-frac{1}{8} x^{2}, 1-cos ^{alpha} x sim frac{alpha}{2} x^{2}, f(x) rightarrow 1 mathrm{H}^{+}, ln f(x) sim f(x)-1

$$技巧: 加减中把极限存在 (不管是否为0) 的部分拆项先算出来, 乘除中把极限存在 (必须不为0)的部分分离先算出来, 对 $$ x rightarrow 0 (或 +infty,-infty ) 且带 frac{1}{x} $$ 的极限采用倒带换, 猪大头, 有理化

误区: 乱等价, 乱计算出来一部分的极限, 不作必要化简

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值