一. 函数极限方法: 等价代换, 洛必达法则, 泰勒公式, 导数定义, 拉格朗日中值定理
注:
$$
x rightarrow 0时, x-sin x sim frac{1}{6} x^{3}, x-arcsin x sim-frac{1}{6} x^{3}, x-tan x sim-frac{1}{3} x^{3}
$$
$$
x-arctan x sim frac{1}{3} x^{3}, x-ln (1+x) sim frac{1}{2} x^{2}, tan x-sin x sim frac{1}{2} x^{3}, quad e^{x}-1-x sim frac{1}{2} x^{2}
$$
$$
sqrt{1+x}-1-frac{1}{2} x sim-frac{1}{8} x^{2}, 1-cos ^{alpha} x sim frac{alpha}{2} x^{2}, f(x) rightarrow 1 mathrm{H}^{+}, ln f(x) sim f(x)-1
$$技巧: 加减中把极限存在 (不管是否为0) 的部分拆项先算出来, 乘除中把极限存在 (必须不为0)的部分分离先算出来, 对 $$ x rightarrow 0 (或 +infty,-infty ) 且带 frac{1}{x} $$ 的极限采用倒带换, 猪大头, 有理化
误区: 乱等价, 乱计算出来一部分的极限, 不作必要化简