多元函数的泰勒展开公式

泰勒定理

泰勒展开是一个很有趣的方法。应该大部分人都看过下面这么一条定理:

泰勒定理:若函数f(x)在闭区间[a,b]上存在直至n阶的连续导函数,在开区间(a,b)内存在(n+1)阶导函数,则对任意给定的 x,x0[a,b] x , x 0 ∈ [ a , b ] ,至少存在一点 ξ(a,b) ξ ∈ ( a , b ) ,使得

f(x)=+f(x0)+f (x0)(xx0)+f ′′(x0)2!(xx0)2+f(n)(x0)n!(xx0)n+f(n+1)(ξ)(n+1)!(xx0)n+1 f ( x ) = f ( x 0 ) + f   ′ ( x 0 ) ( x − x 0 ) + f   ″ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1

他的原理也很简单,那就是,当两个函数接近的时候,那么他们在某个点的值肯定相等: f(0)=g(0) f ( 0 ) = g ( 0 )
他们的一阶导数在一点上也应该相等 f(0)=g(0) f ′ ( 0 ) = g ′ ( 0 )
二阶导数也应该相等 f′′(0)=g′′(0) f ″ ( 0 ) = g ″ ( 0 ) ,如此类推。。
那么我们能不能用一个多项式函数去逼近这么一个函数呢?而答案正是泰勒展开。

举个例子,假设f(x)是你想逼近的函数,g(x)则是它的二阶泰勒逼近,即: g(x)=f(0)+f(0)(x0)+f′′(0)2(x0)2 g ( x ) = f ( 0 ) + f ′ ( 0 ) ( x − 0 ) + f ″ ( 0 ) 2 ( x − 0 ) 2
于是显然有: g(0)=f(0)。g(x)对x求导:

g(x)g′′(x)=f(0)+f′′(0)(x0)=f′′(0)(185)(186) (185) g ′ ( x ) = f ′ ( 0 ) + f ″ ( 0 ) ( x − 0 ) (186) g ″ ( x ) = f ″ ( 0 )

因此 g(0)=f(0) g ′ ( 0 ) = f ′ ( 0 ) , g′′(0)=f′′(0) g ″ ( 0 ) = f ″ ( 0 )
当级数趋于无穷的时候就能近似任意的函数了。
盗个图:
这里写图片描述

f(x+y)f(x)+f(ξ)y f ( x + y ) ≈ f ( x ) + f ′ ( ξ ) y

多元函数的泰勒展开

多元函数的泰勒近似的原理也是类似的,只不过在多元函数中,我们要求的两个函数值相同,变成了有多个点: f(a,b)=g(a,b) f ( a , b ) = g ( a , b ) , Df(a,b)=Dg(a,b) D f ( a , b ) = D g ( a , b ) , Hf(a,b)=Hg(a,b) H f ( a , b ) = H g ( a , b ) ,这里的Df(a,b)是导数矩阵,Hf(a,b)是黑塞矩阵(二阶导),于是多元函数的泰勒展开公式就变成:

f(x)f(a)+Df(a)(xa)+12(xa)THf(a)(xa). f ( x ) ≈ f ( a ) + D f ( a ) ( x − a ) + 1 2 ( x − a ) T H f ( a ) ( x − a ) .

其中

Df(a,b)=[fx1(a,b),fx2(a,b)]. D f ( a , b ) = [ ∂ f x 1 ( a , b ) , ∂ f x 2 ( a , b ) ] .

Hf=2fx21(a,b)2fx2 x1(a,b)2fx1 x2(a,b)2fx22(a,b) H f = [ ∂ 2 f ∂ x 1 2 ( a , b ) ∂ 2 f ∂ x 1   ∂ x 2 ( a , b ) ∂ 2 f ∂ x 2   ∂ x 1 ( a , b ) ∂ 2 f ∂ x 2 2 ( a , b ) ]

举个例子,一个二元函数f(x,y)在点(a,b)上的的泰勒展开式为:

f(x,y)+=++f(a,b)+[fx(a,b),fy(a,b)][xayb]12[xayb]2fx2(a,b)2fy x(a,b)2fx y(a,b)2fy2(a,b)[xayb]f(a,b)+(xa)fx(a,b)+(yb)fy(a,b)12!(xa)2f′′xx(a,b)+12!(xa)(yb)f′′xy(a,b)12!(xa)(yb)f′′yx(a,b)+12!(yb)2f′′yy(a,b) f ( x , y ) ≈ f ( a , b ) + [ ∂ f x ( a , b ) , ∂ f y ( a , b ) ] [ x − a y − b ] + 1 2 [ x − a y − b ] [ ∂ 2 f ∂ x 2 ( a , b ) ∂ 2 f ∂ x   ∂ y ( a , b ) ∂ 2 f ∂ y   ∂ x ( a , b ) ∂ 2 f ∂ y 2 ( a , b ) ] [ x − a y − b ] = f ( a , b ) + ( x − a ) f x ′ ( a , b ) + ( y − b ) f y ′ ( a , b ) + 1 2 ! ( x − a ) 2 f x x ″ ( a , b ) + 1 2 ! ( x − a ) ( y − b ) f x y ″ ( a , b ) + 1 2 ! ( x − a ) ( y − b ) f y x ″ ( a , b ) + 1 2 ! ( y − b ) 2 f y y ″ ( a , b )

黑塞矩阵更一般的形式可以写成:

Hf(x1,x2,...,xn)=2fx212fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fx2n. H f ( x 1 , x 2 , . . . , x n ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] .

参考资料

https://mathinsight.org/taylors_theorem_multivariable_introduction
https://mathinsight.org/derivative_matrix
https://mathinsight.org/taylor_polynomial_multivariable_examples
https://blog.csdn.net/red_stone1/article/details/70260070
怎样更好地理解并记忆泰勒展开式? - 陈二喜的回答 - 知乎

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值