泰勒定理
泰勒展开是一个很有趣的方法。应该大部分人都看过下面这么一条定理:
泰勒定理:若函数f(x)在闭区间[a,b]上存在直至n阶的连续导函数,在开区间(a,b)内存在(n+1)阶导函数,则对任意给定的
x,x0∈[a,b]
x
,
x
0
∈
[
a
,
b
]
,至少存在一点
ξ∈(a,b)
ξ
∈
(
a
,
b
)
,使得
他的原理也很简单,那就是,当两个函数接近的时候,那么他们在某个点的值肯定相等:
f(0)=g(0)
f
(
0
)
=
g
(
0
)
,
他们的一阶导数在一点上也应该相等
f′(0)=g′(0)
f
′
(
0
)
=
g
′
(
0
)
,
二阶导数也应该相等
f′′(0)=g′′(0)
f
″
(
0
)
=
g
″
(
0
)
,如此类推。。
那么我们能不能用一个多项式函数去逼近这么一个函数呢?而答案正是泰勒展开。
举个例子,假设f(x)是你想逼近的函数,g(x)则是它的二阶泰勒逼近,即:
g(x)=f(0)+f′(0)(x−0)+f′′(0)2(x−0)2
g
(
x
)
=
f
(
0
)
+
f
′
(
0
)
(
x
−
0
)
+
f
″
(
0
)
2
(
x
−
0
)
2
,
于是显然有: g(0)=f(0)。g(x)对x求导:
因此 g′(0)=f′(0) g ′ ( 0 ) = f ′ ( 0 ) , g′′(0)=f′′(0) g ″ ( 0 ) = f ″ ( 0 )
当级数趋于无穷的时候就能近似任意的函数了。
盗个图:
多元函数的泰勒展开
多元函数的泰勒近似的原理也是类似的,只不过在多元函数中,我们要求的两个函数值相同,变成了有多个点: f(a,b)=g(a,b) f ( a , b ) = g ( a , b ) , Df(a,b)=Dg(a,b) D f ( a , b ) = D g ( a , b ) , Hf(a,b)=Hg(a,b) H f ( a , b ) = H g ( a , b ) ,这里的Df(a,b)是导数矩阵,Hf(a,b)是黑塞矩阵(二阶导),于是多元函数的泰勒展开公式就变成:
其中
举个例子,一个二元函数f(x,y)在点(a,b)上的的泰勒展开式为:
黑塞矩阵更一般的形式可以写成:
参考资料
https://mathinsight.org/taylors_theorem_multivariable_introduction
https://mathinsight.org/derivative_matrix
https://mathinsight.org/taylor_polynomial_multivariable_examples
https://blog.csdn.net/red_stone1/article/details/70260070
怎样更好地理解并记忆泰勒展开式? - 陈二喜的回答 - 知乎