直方图设置坐标_你了解matplotlib吗?直方图基础篇

本文介绍了直方图的概念及其与条形图的区别,详细讲解了matplotlib库中绘制直方图的参数,包括bins、range、density、weights和cumulative,并通过实例展示了这些参数如何影响直方图的展示,帮助读者更好地理解和应用直方图绘制。
摘要由CSDN通过智能技术生成

首先按照惯例先来认识下直方图是谁,以下是从维基百科搬运过来的直方图的定义:

​ 在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量,以长条图(bar)的形式具体表现。因为直方图的长度及宽度很适合用来表现数量上的变化,所以较容易解读差异小的数值。

直方图也是用条形进行标注的,而条形图和直方图犹如孪生兄弟般让很多人都傻傻分不清,那么我们就先来好好区分一下这两种图形吧:

  • 条形图是用条形的长度表示各类别频数的多少,而宽度(表示类别)是固定的,没有实际的数值意义。
  • 直方图是用面积表示各组频数的多少,条形的长度表示每一组的频数或频率,条形的宽度表示各组的组距,所以直方图中条形的长度和宽度都是有实际的数值意义的。
  • 条形图描述分类变量,直方图描述数值变量。
  • 由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列的。

单纯文字不够直观的话,我们来个图感受下:

1091394cdb63f89ccd48e058b631157c.png

绘制直方图

区分好了条形图和直方图,就可以安心的探索直方图了。

假设我们有一组数据,是一个学校200位同学的身高数据,如果想要知道该校学生身高的分布,那么直方图再合适不过了。

这里我用随机数生成了200个值在150到180之间的数表示身高信息:

data = np.random.randint(150,180,200)data

输出的结果:

array([162, 166, 158, 166, 165, 170, 157, 156, 164, 161, 154, 176, 166,       176, 153, 169, 164, 153, 171, 175, 171, 173, 155, 165, 168, 160,       162, 150, 151, 169, 166, 152, 174, 176, 160, 155, 158, 152, 159,       179, 179, 168, 178, 166, 174, 171, 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值