java graham_Graham Scan凸包算法

本文详细介绍了二维凸包算法GrahamScan的原理和实现过程,包括如何通过叉积判断点的相对位置,以及如何构建和调整凸包。此外,还给出了C++实现的代码示例,并结合具体题目POJ1113Wall,阐述了凸包在求解问题中的应用,即找到包围所有点的最小闭合曲线的周长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

获得凸包的算法可以算是计算几何中最基础的算法之一了。寻找凸包的算法有很多种,Graham Scan算法是一种十分简单高效的二维凸包算法,能够在O(nlogn)的时间内找到凸包。

首先介绍一下二维向量的叉积(这里和真正的叉积还是不同的):对于二维向量a=(x1,y2)和b=(x2,y2),a×b定义为x1*y2-y1*x2。而它的几何意义就是|a||b|sin。如果a与b夹角小于180度(逆时针),那么这个值就是正值,大于180度就是负值。需要注意的是,左乘和右乘是不同的。如图所示:149ccdc0168631e239d9b06fe6b2bb4d.png

Graham Scan算法的做法是先定下一个起点,一般是最左边的点和最右边的点,然后一个个点扫过去,如果新加入的点和之前已经找到的点所构成的“壳”凸性没有变化,就继续扫,否则就把已经找到的最后一个点删去,再比较凸性,直到凸性不发生变化。分别扫描上下两个“壳”,合并在一起,凸包就找到了。这么说很抽象,我们看图来解释:

我们找下“壳”,上下其实是一样的。首先加入两个点A和C:

2ddf3ff5b8306f591a536f5559ec8b44.png

然后插入第三个点G,并计算AC×CG的叉积,却发现叉积小于0,也就是说逆时针方向上∠ACG大于180度,于是删去C点,加入G点:

a6dfa2d8f1583a42162f175749b79fe7.png30d9ad50024bc633faf19db3890b9717.png

然后就是依照这个步骤便能加入D点。在AD上方是以D为起点。就能够找到AGD和DFEA两个凸壳。合并就得到了凸包。

260ed69604c5d741892abb88c6c0e59d.png

关于扫描的顺序,有坐标序和极角序两种。坐标序是比较两个点的x坐标,如果小的先被扫描(扫描上凸壳的时候反过来);如果两个点x坐标相同,那么就比较y坐标,小的先被扫描(扫描上凸壳的时候也是反过来)。极角序使用arctan2函数的返回值进行比较,我没写过所以也不是很清楚。

程序可以写得很精简,以下是我用C++写得凸包程序

/*

d[]是一个Point的数组,Point有两个两个属性x和y,同时支持减法操作和det(叉积)。

convex数组保存被选中的凸包的点的编号,cTotal是凸包中点的个数

*/

bool cmpPoint(const Point &a, const Point &b) //比较坐标序所用的比较函数

{

if (a.x!=b.x) return a.x

return a.y

}

void get_convex_hull()

{

sort(d,d+N,cmpPoint);

int Total=0,tmp;

for (int i=0;i

{

while ( (Total>1) &&

((d[convex[Total-1]]-d[convex[Total-2]]).det( //获得凸包中最后两个点的向量

d[i]-d[convex[Total-1]])<=0) ) Total--; //获得准备插入的点和凸包中最后一点的向量,计算叉积

convex[Total++]=i;

}

tmp=Total;

for (int i=N-2;i>=0;--i) //扫描上凸壳

{

while ( (Total>tmp) &&

((d[convex[Total-1]]-d[convex[Total-2]]).det(

d[i]-d[convex[Total-1]])<=0) ) Total--;

convex[Total++]=i;

}

cTotal=Total;

}

我们来看一道题:POJ1113 Wall,题意是给一些点,找一个闭合曲线C,使C能包住所有的点,并且给定的点到C的距离最小为L,问C的周长。稍微画一画就知道这个C的周长是这些点所构成的凸包的周长加上以L为半径的圆的周长。于是求一个凸包再加上2πL就可以了。我的程序如下:

#include

#include

#include

#include

#include

using std::sort;

#define MAXN 1002

int N,L;

double sqr(double a)

{

return a*a;

}

struct Point

{

double x,y;

inline Point operator- (const Point &t)

{

Point ret;

ret.x=x-t.x;

ret.y=y-t.y;

return ret;

}

inline Point operator+ (const Point &t)

{

Point ret;

ret.x=x+t.x;

ret.y=y+t.y;

return ret;

}

inline int det(const Point &t)

{

return x*t.y-t.x*y;

}

inline double dist(Point &t)

{

return sqrt(sqr(x-t.x)+sqr(y-t.y));

}

}d[MAXN];

bool cmpPoint(const Point &a, const Point &b)

{

if (a.x!=b.x) return a.x

return a.y

}

int convex[MAXN],cTotal;

void get_convex_hull()

{

sort(d,d+N,cmpPoint);

int Total=0,tmp;

for (int i=0;i

{

while ( (Total>1) &&

((d[convex[Total-1]]-d[convex[Total-2]]).det(

d[i]-d[convex[Total-1]])<=0) ) Total--;

convex[Total++]=i;

}

tmp=Total;

for (int i=N-2;i>=0;--i)

{

while ( (Total>tmp) &&

((d[convex[Total-1]]-d[convex[Total-2]]).det(

d[i]-d[convex[Total-1]])<=0) ) Total--;

convex[Total++]=i;

}

cTotal=Total;

}

int main()

{

scanf("%d%d",&N,&L);

for (int i=0;i

{

scanf("%lf%lf",&d[i].x,&d[i].y);

}

get_convex_hull();

double Ans=0;

for (int i=0;i

{

Ans+=d[convex[i]].dist(d[convex[i+1]]);

}

Ans+=d[convex[0]].dist(d[convex[cTotal-1]]);

Ans+=3.1415926*2*L;

printf("%.0lf\n",Ans);

return 0;

}

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值