机器学习 —— 聚类算法--商业选址案例

目录

基于用户位置信息的商业选址案例

一、聚类算法描述

二、聚类算法特点

三、场景实例

四、算法 - Kmeans

五、K-means算法实现步骤

六、K-means算法优缺点

七、评估模型

八、代码示例


基于用户位置信息的商业选址案例

随着信息技术的快速发展,移动设备和移动互联网已经普及到千家万户。在用户使用移动网络时,会自然的留下用户的位置信息。随着近年来GIS地理信息技术的不断完善普及,结合用户位置和GIS地理信息带来创新应用。

本案例希望通过大量移动设备用户的位置(经纬度)信息,为某连锁餐饮机构提供新店选址。


一、聚类算法描述

聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不埋雷的探长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值