线性方程的迭代解法 c语言,求解线性方程的迭代解法.ppt

求解线性方程的迭代解法

第四章 线性方程组 迭代解法 第四章目录 第四章 方程组的迭代解法概述 迭代解法概述(续) §1 向量序列与矩阵序列的极限 向量序列与矩阵序列的极限(续) 矩阵序列的收敛概念及定理 §2 雅可比(Jacobi)迭代法 雅可比(Jacobi)迭代法(续) Jacobi迭代法定义 Jacobi迭代法定义(续) Jacobi迭代法举例 Jacobi迭代法举例 §3 高斯—塞德尔(Gauss-Seidel)迭代法 高斯—塞德尔(Gauss-Seidel)迭代法续1 Gauss-Seidel迭代法求解 求例2中的Gauss-Seidel法的迭代阵M的两种方法 求例2中的Gauss-Seidel法的迭代阵M的两种方法续1 求例2中的Gauss-Seidel法的迭代阵M的两种方法续2 §4 松驰法 松驰法(续) SOR法的迭代矩阵 用SOR法解线性方程组(例3) 例 3 (续1) 例 3 (续2) §5 迭代法的收敛条件及误差估计 矩阵的谱半径(续) 公式 的重要性说明 定理3(续) 5.2 迭代法的收敛条件 迭代法的收敛条件(续1) 迭代法的收敛条件(续2) 两种迭代法举例 例4( Jacobi迭代法续) 例4( G-S迭代法续) 两种迭代法说明 两种迭代法说明(续) 直接用矩阵A判定敛散性 直接用矩阵A判定敛散性(续) 三种迭代法判定敛散性举例 例 5 (续) 例6 G-S迭代阵为: 两点注释 两点注释(续) 5.3 误差估计 定理5(续) 迭代改善法 迭代改善法(续1) 迭代改善法(续2) 迭代改善法(续3) 迭代改善法(续4) 迭代改善法(续5) §6 非线性方程组的解法 非线性方程组的解法(续) 6.1 Newton法 Newton法的具体做法 两个方程情况下的Newton法 两个方程情况下的Newton法举例 6.2 最速下降法 最速下降法(续) 最速下降法的二维说明 最速下降法的二维说明(续) 最速下降法的二维说明续 推论2 定理4表明,迭代法收敛与否只决定于迭代矩阵的谱半径,与初始向量及方程组的右端项无关。 对同一方程组,由于不同的迭代法其迭代矩阵不同,因此可能出现有的方法收敛,有的方法发散的情形。 例4 讨论Jacobi迭代法与Gauss-Seidel迭代法的收敛性。 解:首先要求出迭代矩阵,然后利用推论1((充分条件)及定理4(充分必要条件)进行讨论。 对Jacobi迭代法: 对G-S迭代法: 注1:对G-S法,为避免求逆阵可按下面两个方法: 注2:例4也说明0 < ? < 2确实只是松驰法的必要条件, 而非充分条件,因为G-S法即为? = 1的情形。 定理4虽然给出了判别迭代法收敛的充要条件,但实际 使用时很不方便,因为求逆矩阵和特征值的难度并不亚于 用直接法求解线性方程组。而推论1仅为充分条件。很多 情况下如例3,由推论1无法判别收敛性。下面对一些特殊 的方程组,从方程组本身出发给出几个常用的判别条件, 而不必求迭代阵的特征值或范数。 且至少有一个 i 值,使上式中不等号严格成立,则称A为弱对角占优阵。若对所有 i,上式中不等号均严格成立,则称A为严格对角占优阵。 定义4 为严格对角占优阵,Jacobi迭代法与G-S迭代法均收敛。 又如例3中,系数矩阵: 为非严格对角占优,但A为对称正定矩阵,且? = 1.4 ? 松驰法收敛。 如例1中,线性方程组的系数矩阵: 设有线性方程组Ax= b,下列结论成立: 1. 若A为严格对角占优阵,则Jacobi迭代法与G-S法均收敛; 2. 若A为严格对角占优阵,0 < ? ≤ 1,则松驰法收敛; 3. 若A为对称正定矩阵, 0 < ? < 2,则松驰法收敛; 若A为对称正定阵,松驰法收敛? 0 < ? < 2。 解:可以总结,讨论迭代法的收敛性,应首先从A出发讨 论其是否具有主对角占优或对称正定性;其次对迭代法的 迭代阵讨论其是否有范数小于1;最后利用迭代阵的谱半径讨论(这是充分必要条件)。 例5 对Jacobi迭代法,其迭代阵容易由A直接得到: 解 Jacobi迭代阵为: 例6 注1:值得注意的是,改变方程组中方程的 次序,即将系数矩阵进行行交换, 会改变迭代法的收 敛性,例如,设有方程组Ax = b,其中: 两点注释 注2:在利用迭代阵的范数判定收敛时(推论1),只要 迭代阵的范数小于1,即可判 定其收敛性,但当|| ||≥1时 ,则无法判定,还需利用谱半径作最后判定,并且,由 于不同的范数其值不同,可能会出现某一种范数小于1 但很接近于1(收敛), 这时

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值