数值分析(3):线性代数方程组的迭代解法

13 篇文章 0 订阅 ¥99.90 ¥299.90

1. 迭代法的基本概念

前一章讲述了线性代数方程组的直接解法,本质上还是矩阵运算,只是用了一些技巧让计算简单(在计算复杂度上可能并没有改善)。而本章讲述的是线性方程组的迭代解法,从一个初始解出发,迭代求解,逐渐收敛到目标真解。

1.1 向量序列和矩阵序列的极限

  1. 向量序列的极限是根据向量中每个元素的极限来定义的,如果向量中每个元素的序列都收敛,那么向量序列收敛。
    向量序列的极限还可以根据向量范数(注意是任意向量范数,不一定要是二范数)收敛到0来定义,即:

在这里插入图片描述

  1. 矩阵序列的极限是根据矩阵中每个元素的极限来定义的,如果矩阵中每个元素的序列都收敛,那么矩阵序列收敛。
    矩阵序列的极限还可以根据矩阵范数(注意是任意矩阵范数,不一定要是二范数)收敛到0来定义,即:
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值