线性代数方程组的迭代解法
1. 迭代法的基本概念
前一章讲述了线性代数方程组的直接解法,本质上还是矩阵运算,只是用了一些技巧让计算简单(在计算复杂度上可能并没有改善)。而本章讲述的是线性方程组的迭代解法,从一个初始解出发,迭代求解,逐渐收敛到目标真解。
1.1 向量序列和矩阵序列的极限
- 向量序列的极限是根据向量中每个元素的极限来定义的,如果向量中每个元素的序列都收敛,那么向量序列收敛。
向量序列的极限还可以根据向量范数(注意是任意向量范数,不一定要是二范数)收敛到0来定义,即:
- 矩阵序列的极限是根据矩阵中每个元素的极限来定义的,如果矩阵中每个元素的序列都收敛,那么矩阵序列收敛。
矩阵序列的极限还可以根据矩阵范数(注意是任意矩阵范数,不一定要是二范数)收敛到0来定义,即: