计算$e^{-x^2}$的积分

计算 e − x 2 e^{-x^2} ex2的积分

下面讨论如何计算以下积分
∫ − ∞ ∞ e − x 2 d x = π \int_{-\infty}^{\infty}e^{-x^2} dx= \sqrt{\pi} ex2dx=π
∫ 0 ∞ e − x 2 d x = π 2 \int_{0}^{\infty}e^{-x^2} dx= \frac{\sqrt{\pi}}{2} 0ex2dx=2π

1.利用极坐标

A = ∫ − ∞ ∞ e − x 2 d x A = \int_{-\infty}^{\infty}e^{-x^2} dx A=ex2dx

B = ∫ − ∞ ∞ e − y 2 d y B = \int_{-\infty}^{\infty}e^{-y^2} dy B=ey2dy
可以知道, A = B A = B A=B成立,因为只有参数不同
则有

A B = ∫ − ∞ ∞ e − x 2 d x ∫ − ∞ ∞ e − y 2 d y = ∫ − ∞ ∞ ∫ − ∞ ∞ e − x 2 e − y 2 d x d y = ∫ − ∞ ∞ ∫ − ∞ ∞ e − ( x 2 + y 2 ) d x d y = ∫ 0 2 π ∫ 0 ∞ e − r 2 r d r d θ = ∫ 0 2 π d θ ∫ 0 ∞ e − r 2 r d r = ∫ 0 2 π d θ ∫ 0 ∞ 1 2 e − r 2 d r 2 = 2 π ∫ 0 ∞ 1 2 e − r 2 d r 2 = − π e − r 2 ∣ 0 ∞ = π \begin{aligned} AB & = \int_{-\infty}^{\infty}e^{-x^2} dx\int_{-\infty}^{\infty}e^{-y^2} dy\\ &=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^2} e^{-y^2} dxdy\\ &=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)} dxdy\\ &=\int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2} rdrd\theta\\ &=\int_{0}^{2\pi}d\theta\int_{0}^{\infty}e^{-r^2} rdr\\ &=\int_{0}^{2\pi}d\theta\int_{0}^{\infty}\frac{1}{2}e^{-r^2} dr^2\\ &=2\pi\int_{0}^{\infty}\frac{1}{2}e^{-r^2}dr^2\\ &=-\pi e^{-r^2}\bigg|_0^\infty\\ &=\pi \end{aligned} AB=ex2dxey2dy=ex2ey2dxdy=e(x2+y2)dxdy=02π0er2rdrdθ=02πdθ0er2rdr=02πdθ021er2dr2=2π021er2dr2=πer20=π
得到 A B = π AB=\pi AB=π,由 A = B A=B A=B,得到 A = π A = \sqrt{\pi} A=π

∫ − ∞ ∞ e − x 2 d x = π \int_{-\infty}^{\infty}e^{-x^2} dx= \sqrt{\pi} ex2dx=π
注意到 e x 2 e^{x^2} ex2是偶函数,由偶函数的性质,得到
∫ 0 ∞ e − x 2 d x = π 2 \int_{0}^{\infty}e^{-x^2} dx= \frac{\sqrt{\pi}}{2} 0ex2dx=2π

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 要解定积分 $\int_{x}^{\infty} e^{-y} dy$。 首先,我们可以对 $e^{-y}$ 进行不定积分,得到 $-\int e^{-y} d(-y) = -e^{-y} + C$,其中 $C$ 为积分常数。 然后,我们可以将积分限代入不定积分的结果,得到: $$\int_{x}^{\infty} e^{-y} dy = \left[ -e^{-y} \right]_{x}^{\infty} = \lim_{t \rightarrow \infty} (-e^{-t} - (-e^{-x}))$$ 当 $t \rightarrow \infty$ 时,$e^{-t} \rightarrow 0$,因此上式等于: $$\int_{x}^{\infty} e^{-y} dy = e^{-x}$$ 因此,定积分 $\int_{x}^{\infty} e^{-y} dy$ 的结果为 $e^{-x}$。 ### 回答2: 要计算积分$\int_{x}^{\infty} e^{-y} \,dy$。 我们可以使用变量代换的方法来解这个积分。我们令$u=-y$,则$du=-dy$。同时,当$y$趋近于正无穷时,$u$会趋近于负无穷。 当$y=x$时,$u=-x$;当$y$趋近于正无穷时,$u$趋近于负无穷。 代入积分得:$\int_{-x}^{-\infty}e^u \,du$。 再次改写积分的上下限,得到$\int_{-\infty}^{-x}e^u \,du$。 现在,我们需要解决这个积分。反函数$(-e^u)'=-e^u$,所以我们可以将其积分改为负号并换回到$y$的变量。 得到的结果是:$\left[-e^u\right]_{-\infty}^{-x}=-e^{-x}-(-e^{-\infty})=-e^{-x}$。 因此,定积分$\int_{x}^{\infty} e^{-y} \,dy$的结果为$-e^{-x}$。 总结:定积分$\int_{x}^{\infty} e^{-y} \,dy$的结果为$-e^{-x}$。 ### 回答3: 要计算积分$\int_x^{+\infty} e^{-y} \, dy$。 首先,我们注意到$e^{-y}$是连续函数,且在区间$(x, +\infty)$上始终为正。因此,该定积分存在。 我们可以使用不定积分的方法来计算出该定积分的值。记$F(y)=-e^{-y}$,则$F'(y)=e^{-y}$。根据不定积分的性质,我们有: $$\int e^{-y} \, dy = -e^{-y} + C$$ 这里的$C$是积分常数。将上述结果代入定积分的表达式中,我们有: $$\int_x^{+\infty} e^{-y} \, dy = \lim_{y\to+\infty} \left(-e^{-y} - (-e^{-x})\right)$$ 由于当$y$趋向于正无穷时,$-e^{-y}$趋近于0,以上极限为: $$\int_x^{+\infty} e^{-y} \, dy = e^{-x}$$ 综上所述,定积分$\int_x^{+\infty} e^{-y} \, dy$的值为$e^{-x}$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值