python绘图代码大全_python绘图代码总结

本文介绍了如何使用Python进行数据可视化,包括使用matplotlib库创建折线图和柱状图。示例展示了自定义刻度、标签、颜色和线条样式,以及设置纵轴为百分比格式。此外,还提到了SciencePlots库用于美化图表。
摘要由CSDN通过智能技术生成

经常重复使用的绘图代码

使用SciencePlots画论文配图可见:传送门

折线图

import matplotlib.pyplot as plt

import matplotlib as mpl

# 中文和负号的正常显示

mpl.rcParams['font.sans-serif'] = ['Times New Roman']

mpl.rcParams['font.sans-serif'] = [u'SimHei']

mpl.rcParams['axes.unicode_minus'] = False

#自定义刻度和标签

times=data1['start_time_noday'].tolist()

# 分时间区间,保证最后一位纳入标签

ticks=list(range(0,len(times),2))

if ticks[-1]!=len(times)-1:

ticks.append(len(times)-1)

labels=[times[i] for i in ticks]

##绘图

fig= plt.figure(figsize=(8, 4),dpi=100)

# 设置图形的显示风格

plt.style.use('ggplot')

ax1 = fig.add_subplot(111)

ax1.plot(data1['order_id'],'-*',linewidth=1.5,label='非雨天工作日')

ax1.plot(data2['order_id'],'-o',linewidth=1.5,label='非雨天周末')

ax1.plot(data3['order_id'],'-v',linewidth=1.5,label='雨天工作日')

ax1.plot(data4['order_id'],'-^',linewidth=1.5,label='雨天周末')

ax1.legend(loc='upper right', frameon=False,fontsize = 10)

ax1.set_xlabel('时间',fontsize =10)

ax1.set_ylabel('订单量',fontsize =10)

ax1.set(xlim=[0,len(times)-1])

ax1.set_xticks(ticks)

ax1.set_xticklabels(labels, rotation=45, horizontalalignment='right')

ax1.tick_params(labelsize=8)

ax1.set_title('骑行订单时间分布',fontsize =8)

plt.vlines(32, 0, 2358, colors = "black", linestyles = "dashed",linewidth=0.8)

plt.vlines(34, 0, 1366, colors = "black", linestyles = "dashed",linewidth=0.8)

plt.vlines(72, 0, 1702, colors = "black", linestyles = "dashed",linewidth=0.8)

bbox_props=dict(boxstyle="round",fc="w",ec="0.5",alpha=0)

ax1.text(30,100,'8:00',ha='center',va='center',

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值