问题描述:
离散数学N元真值函数问题
设F:{0,1}^n→{0,1}
n个命题变项构成2^(2^n)个真值函数
列出了表格
p F(1)0 F(1)1 F(1)2 F(1)3
0 0 0 1 1
F(1)之后的下标 1,2 ,3,4
还有 F(1)n n=0 ,1,2,3
1个回答
分类:
数学
2014-10-27
问题解答:
我来补答
我学过真值函数,但没有你说的这么复杂.
你要想探讨,请告诉我:
1、这个表格是什么?
2、p 是什么?
3、F(1) 是什么?
再问: 额 忘了说了 P为一个命题变项 F:{0,1}^n→{0,1} {0,1}^n为定义域 {0,1}为值域 当P为0时 F(1)0表示什么式子? 它的值为0? 那个表格是一一对应的
再答: 我有两个疑问: 1、既然是 n 元真值函数,就会有 n 个变元,怎么会只有 1 个 p? 2、从 F 的定义可以看出,F 就是一个 n 元函数,通常应在其后面的括号内按顺序,列出所有自变量(可以变量符号,也可以是具体取值),或直接省略所有变量及括号(只写 F)。为什么本题的 F 后面的括号中只有 1 个 1? 所以,我对符号“F(1)0“ 的含义有以下猜测: 1、临时符号:有可能这只是作者临时构造的一个符号,只是为了解释某一个题目。虽然这种可能性不大,但如果真是这样,那这符号的含义只能从原题中获得解释了。 2、专用数学符号:如果这是有严格定义的数学符号,我们应该从教材中获取解释。 我不是数学专业的,没有学过这种符号,所以无法给你实质性帮助。如果楼主想听听我的意见的话,倒是可以谈谈。 我猜测,F(1)0 是“一元”函数 F0 在自变量取值为 1 时的函数值。而“一元”函数 F0 是一个与“n元”函数 F 相关的函数。并且这种从“n元”到“一元”的转化应该依赖于变元 p —— p 原来是 F 的 n 个变量之一,现在是 F0 的唯一变量。至于F(1)1、F(1)2、F(1)3… 则分别是一元函数 F1、F2、F3 在 p = 1 时的函数值,F1、F2、F3则分别是对 F0 做进一步转化得到的函数。 以上纯属猜测,真正的含义最好查看教材或请教真明白的人。不过你要想进一步与我探讨,还请告诉我你这题目是从哪儿找的,或许有帮助。
展开全文阅读