数理逻辑(离散数学)学习笔记(8)

联结词的功能完全集

【定义1.21】在联结词的集合 Ω \Omega Ω中,如果一个联结词可以用集合 Ω \Omega Ω中的其他联结词表示,则该联结词在 Ω \Omega Ω中被称为冗余的,否则该联结词被称为独立的
x → y < = > ¬ x ∨ y x→y<=>¬x∨y xy<=>¬xy x ↔ y < = > ( x → y ) ∨ ( y → x ) x↔y<=>(x→y)∨(y→x) xy<=>(xy)(yx)知在 Ω = { ¬ , → , ↔ , ∨ , ∧ } \Omega=\{¬,→,↔,∨,∧\} Ω={¬}中→和↔是冗余的。下面的定理、定义为证明 Ω = { ¬ , ∨ , ∧ } \Omega=\{¬,∨,∧\} Ω={¬}为完全集。
【定义1.22】 { 0 , 1 } \{0,1\} {0,1}上的 n n n元函数 f : { 0 , 1 } n → { 0 , 1 } f:\{0,1\}^n→\{0,1\} f:{0,1}n{0,1}称为一个 n n n元真值函数:
f ( x 1 , x 2 , . . . , x n ) ∈ { 0 , 1 } , 其 中 x i ∈ { 0 , 1 } f(x_1,x_2,...,x_n) ∈\{0,1\},其中x_i ∈\{0,1\} f(x1,x2,...,xn){0,1},xi{0,1}
如:一元真值函数: f ¬ ( 0 ) = 1 , f ¬ ( 1 ) = 0 , 故 f ¬ : { 0 , 1 } → { 0 , 1 } f_¬(0)=1,f_¬(1)=0,故f_¬:\{0,1\}→\{0,1\} f¬(0)=1,f¬(1)=0f¬:{0,1}{0,1}
一个真值函数就可看成一个命题联结词。设 f : { 0 , 1 } n → { 0 , 1 } f:\{0,1\}^n→\{0,1\} f:{0,1}n{0,1}是一个 n n n元真值函数,则可如下定义一个 n n n元命题联结词 N f N_f Nf:对于 n n n个命题变元 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,命题公式 N f ( x 1 , x 2 , . . . , x n ) N_f(x_1,x_2,...,x_n) Nf(x1,x2,...,xn)在真值赋值函数 < t 1 , t 2 , . . . , t n > <t_1,t_2,...,t_n> <t1,t2,...,tn>下的真值为 f ( t 1 , t 2 , . . . , t n ) f(t_1,t_2,...,t_n) f(t1,t2,...,tn)。互不相同的 n n n元真值函数的个数为 2 2 n , 因 此 可 定 义 2 2 n 个 n 元 命 题 联 结 词 2^{2^n},因此可定义2^{2^n}个n元命题联结词 22n22nn
理解: n n n元真值函数的个数为 2 2 n 2^{2^n} 22n,例如一元真值函数,他的个数为 2 2 1 = 4 2^{2^1}=4 221=4个:

x x x f 0 f_0 f0 f 1 f_1 f1 f 2 f_2 f2 f 3 f_3 f3
00101
10011

从上表可以得到4个真值函数分别为 f 0 , f 1 , f 2 , f 3 f_0,f_1,f_2,f_3 f0f1f2f3,对应到 Ω = { ¬ , → , ↔ , ∨ , ∧ } \Omega=\{¬,→,↔,∨,∧\} Ω={¬}中可表示为:
f 0 = x ∧ ¬ x , f 1 = ¬ x , f 2 = x , f 3 = x ∨ ¬ x f_0=x∧¬x,f_1=¬x,f_2=x,f_3=x∨¬x f0=x¬x,f1=¬x,f2=x,f3=x¬x
2 2 n 2^{2^n} 22n得出的理解: n n n个变元分别为 { x 1 , x 2 , . . . , x n } \{x_1,x_2,...,x_n\} {x1,x2,...,xn},每一个 x i x_i xi分别取 { 0 , 1 } \{0,1\} {0,1},令 ω = { x 1 , x 2 , . . . , x n } \omega=\{x_1,x_2,...,x_n\} ω={x1,x2,...,xn}。则 ω \omega ω共有 2 × 2 × 2 × 2... × 2 = 2 n 2×2×2×2...×2=2^n 2×2×2×2...×2=2n种取值。而对 t i ∈ ω t_i∈\omega tiω,真值函数 f ( t i ) f(t_i) f(ti)只能取值 0 , 1 {0,1} 0,1 ω \omega ω共有 2 n 2^n 2n个元素,所以对应的真值函数的个数为 2 2 n 2^{2^n} 22n
【定义1.23】称联结词的集合 Ω \Omega Ω为联结词的一个功能完全集,如果任意真值函数 f f f都可以用仅含有 Ω \Omega Ω中联结词的命题公式 A A A来表示,即对A中命题变元的任意一个真值赋值 < t 1 , t 2 , t 3 , . . . , t n > <t_1,t_2,t_3,...,t_n> <t1,t2,t3,...,tn>下的真值为 f ( t 1 , t 2 , t 3 , . . . , t n ) f(t_1,t_2,t_3,...,t_n) f(t1,t2,t3,...,tn)
【定理1.12】 { ¬ , ∨ , ∧ } \{¬,∨,∧\} {¬}是联结词的功能完全集。
【推论1.2】 { ¬ , → } , { ¬ , ∨ } 和 { ¬ , ∧ } \{¬,→\},\{¬,∨\}和\{¬,∧\} {¬},{¬}{¬}都是联结词功能完全集。
【定理1.13】 { → , ↔ , ∨ , ∧ } \{→,↔,∨,∧\} {}不是联结词的功能完全集。
对定理【1.12】的证明——数学归纳法
n = 1 n=1 n=1时,只含有一个命题变元 x x x。由于4个真值函数分别可以表示为:
f 0 = 0 = ¬ x ∧ x f_0=0=¬x∧x f0=0=¬xx
f 1 = x f_1=x f1=x
f 2 = ¬ x f_2=¬x f2=¬x
f 3 = 0 = ¬ x ∨ x f_3=0=¬x∨x f3=0=¬xx
故,定理【1.12】在 n = 1 n=1 n=1时成立。
假设定理在 n ≤ k n≤k nk时成立,我们下面来证明定理在 n = k + 1 n=k+1 n=k+1时成立。
f f f是任意一个含有 k + 1 k+1 k+1个命题变元的真值函数,对应的公式为 A A A,其真值表如下:

x 1 x_1 x1 x 2 x_2 x2 x k x_k xk x k + 1 x_{k+1} xk+1 f f f
0000 t 1 t_1 t1
0001 t 2 t_2 t2
0111 t 2 k t_{2^k} t2k
1000 t 2 k + 1 t_{2^k+1} t2k+1
1111 t 2 k + 1 t_{2^{k+1}} t2k+1

将该真值表以 x 1 = 0 x_1 = 0 x1=0 x 1 = 1 x_1=1 x1=1为界分为前后 2 k 2^k 2k行两部分, x 1 = 0 x_1 = 0 x1=0的部分记为 A 1 A_1 A1 x 1 = 1 x_1=1 x1=1的部分记为 A 2 A_2 A2。由于A、B中的 x 1 x_1 x1都为已知且不可变的量,所以 A 1 A_1 A1 A 2 A_2 A2可以看成两个独立的具有 k k k个命题变元的真值表。根据归纳假设, A 1 A_1 A1 A 2 A_2 A2都可以用仅含有联结词 { ¬ , ∨ , ∧ } \{¬,∨,∧\} {¬}的命题公式表示。易知: A = ( ¬ x 1 ∧ A 1 ) ∨ ( x 1 ∧ A 1 ) A = (¬x_1∧A_1)∨(x_1∧A_1) A=(¬x1A1)(x1A1)。故, A A A可以由仅含有 { ¬ , ∨ , ∧ } \{¬,∨,∧\} {¬}的命题公式表示,证毕。
【定义1.24】设 Ω \Omega Ω为联结词的一个功能完全集。如果 Ω \Omega Ω不含有冗余联结词,则称 Ω \Omega Ω为联结词的最小功能完全集
【定理1.14】 { ¬ , → } , { ¬ , ∨ } 和 { ¬ , ∧ } \{¬,→\},\{¬,∨\}和\{¬,∧\} {¬},{¬}{¬}都是联结词功能完全集的最小功能完全集。
【定义1.25】设 x x x y y y是命题,命题“ x x x y y y合取的否定”称为 x x x y y y合否(与非)记为,称为合与联结词。 x ⬆ y < = > ¬ ( x ∧ y ) x⬆y<=>¬(x∧y) xy<=>¬(xy)
解析: { ⬆ } \{⬆\} {}是一个功能最小的完全集:以为 { ¬ , ∧ } \{¬,∧\} {¬}是一个功能完全集,所以,只要能够用 { ⬆ } \{⬆\} {}来表示 { ¬ , ∧ } \{¬,∧\} {¬}则可以证明 { ⬆ } \{⬆\} {}是一个功能最小的完全集。因为: ¬ x < = > x ⬆ x , x ∧ y < = > ¬ ( x ⬆ y ) < = > ( x ⬆ y ) ⬆ ( x ⬆ y ) ¬x<=>x⬆x,x∧y<=>¬(x⬆y)<=>(x⬆y)⬆(x⬆y) ¬x<=>xx,xy<=>¬(xy)<=>(xy)(xy)
【定义1.26】设 x 和 y x和y xy是命题,命题“ x 与 y x与y xy析取的否定”称为 x 和 y x和y xy的析否(或非),记为 x ⬇ y x⬇y xy。符号 ⬇ ⬇ 称作析否联结词。 ¬ ( x ∨ y ) < = > x ⬇ y ¬(x∨y)<=>x⬇y ¬(xy)<=>xy
x ⬇ y x⬇y xy { ⬆ } \{⬆\} {}都是最小功能完全集。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值