2.1 kmeans算法要点
(1) $ k $ 值的选择
$ k $ 的选择一般是按照实际需求进行决定,或在实现算法时直接给定 $ k $ 值。
(2) 距离的度量
给定样本 $ x^{(i)} = \lbrace x_1{(i)},x_2{(i)},,...,x_n^{(i)}, \rbrace 与 x^{(j)} = \lbrace x_1{(j)},x_2{(j)},,...,x_n^{(j)}, \rbrace ,其中 i,j=1,2,...,m,表示样本数,n表示特征数 $ 。距离的度量方法主要分为以下几种:
(2.1)有序属性距离度量(离散属性 $ \lbrace1,2,3 \rbrace $ 或连续属性):
闵可夫斯基距离(Minkowski distance):
\[dist_{mk}(x^{(i)},x^{(j)})=(\sum_{u=1}^n |x_u^{(i)}-x_u^{(j)}|^p)^{\frac{1}{p}}
\]
欧氏距离(Euclidean distance),即当 $ p=2 $ 时的闵可夫斯基距离:
\[dist_{ed}(x^{(i)},x^{(j)})=||x^{(i)}-x^{(j)}||_2=\sqrt{\sum_{u=1}^n |x_u^{(i)}-x_u^{(j)}|^2}
\]
曼哈顿距离(Manhattan distance),即当 $ p=1 $ 时的闵可夫斯基距离:
\[dist_{man}(x^{(i)},x^{(j)})=||x^{(i)}-x^{(j)}||_1=\sum_{u=1}^n |x_u^{(i)}-x_u^{(j)}|