kmeans算法中的sse_kmeans算法理解及代码实现

本文详细介绍了k-means算法的原理,包括簇中心的选择、距离度量方法,以及如何更新簇中心。重点讨论了k-means算法的局限性和可能的局部最小值问题,并提出了二分k-means算法,通过SSE指标优化聚类效果,避免收敛到局部最小值。文章还提供了算法的实现过程和分析。
摘要由CSDN通过智能技术生成

2.1 kmeans算法要点

(1) $ k $ 值的选择

$ k $ 的选择一般是按照实际需求进行决定,或在实现算法时直接给定 $ k $ 值。

(2) 距离的度量

给定样本 $ x^{(i)} = \lbrace x_1{(i)},x_2{(i)},,...,x_n^{(i)}, \rbrace 与 x^{(j)} = \lbrace x_1{(j)},x_2{(j)},,...,x_n^{(j)}, \rbrace ,其中 i,j=1,2,...,m,表示样本数,n表示特征数 $ 。距离的度量方法主要分为以下几种:

(2.1)有序属性距离度量(离散属性 $ \lbrace1,2,3 \rbrace $ 或连续属性):

闵可夫斯基距离(Minkowski distance):

\[dist_{mk}(x^{(i)},x^{(j)})=(\sum_{u=1}^n |x_u^{(i)}-x_u^{(j)}|^p)^{\frac{1}{p}}

\]

欧氏距离(Euclidean distance),即当 $ p=2 $ 时的闵可夫斯基距离:

\[dist_{ed}(x^{(i)},x^{(j)})=||x^{(i)}-x^{(j)}||_2=\sqrt{\sum_{u=1}^n |x_u^{(i)}-x_u^{(j)}|^2}

\]

曼哈顿距离(Manhattan distance),即当 $ p=1 $ 时的闵可夫斯基距离:

\[dist_{man}(x^{(i)},x^{(j)})=||x^{(i)}-x^{(j)}||_1=\sum_{u=1}^n |x_u^{(i)}-x_u^{(j)}|

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值