matlab dwt2(),MATLAB小波变换指令及其功能介绍(超级有用)

本文介绍了MATLAB中的一维和二维小波变换函数,包括dwt和idwt。dwt用于离散小波变换,通过指定小波基或滤波器组对信号进行分解,产生近似分量和细节分量。idwt则用于小波反变换,重构原始信号。此外,详细说明了如何通过这两个函数进行信号的重构,并指定了返回信号的点数。
摘要由CSDN通过智能技术生成

MATLAB小波变换指令及其功能介绍

1 一维小波变换的 Matlab 实现

(1) dwt函数

功能:一维离散小波变换

格式:[cA,cD]=dwt(X,'wname')

[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT

说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'

对信号X 进行分解,cA、cD 分别为近似分量和细节分量;

[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信

号进行分解。

(2) idwt 函数

功能:一维离散小波反变换

格式:X=idwt(cA,cD,'wname')

X=idwt(cA,cD,Lo_R,Hi_R)

X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分

X=idwt(cA,cD,Lo_R,Hi_R,L)

说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经

小波反变换重构原始信号 X 。

'wname' 为所选的小波函数

X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和

Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

2 二维小波变换的 Matlab 实现

二维小波变换的函数别可以实现一维、二维和 N 维 DFT

函数名函数功能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值