笔记主要基于中文版《应用随机过程 Introduction to Probability Models 》(Sheldon M. Ross),只有非常少的一部分是我自己的注解。写这个笔记的目的是自己复习用,阅读需要一定的微积分和概率论基础。本人为初学者,且全部为自学,如果笔记中有错误,欢迎指正。
提示:概率论和指数分布作为本节的基础,我把一些重要公式写在开头,但是可以直接从泊松过程开始阅读,在泊松过程中用到相关知识点的时候再回头阅读。当然,从头读到尾也许理解得更好。
概率论复习
随机过程是概率论的延申。因为我本科并没有系统学过概率论,所以有必要把一些概率论常用公式罗列在开头。
随机变量用大写字母X表示,随机变量的取值用小写字母x表示,期望和方差的定义如下
利用二阶矩求方差的方法有时比较实用。
通过取条件求概率:
通过取条件求期望:
通过取条件求方差(条件方差公式):
两个独立随机变量X,Y的和的分布计算也很常用,也就是卷积
指数分布及其重要性质
指数分布的定义:
容易计算指数分布的期望为
,方差为
. 对应的CDF(累积分布函数)为
指数分布的重要性质1:指数分布是无记忆的,而且是唯一具有无记忆性质的概率分布。
所谓无记忆的意思是
这个性质可以简单地用累计分布函数来验证,因为
为了具象理解无记忆性,可以举一个例子:假设一个灯泡的寿命是个随机变量X,按照
指数分布。已知灯泡已经正常工作了t个单位时间,那么它还剩下的寿命的概率分布仍然是同样的指数分布。或者说,不管这个灯泡正常工作了多久,它剩下的寿命都是同一个指数分布,期望都是
。
此外,为了更好地理解指数分布,我们定义一个失败率r(t)
无论什么分布都可以定义r(t),而且r(t)唯一确定概率分布。以灯泡寿命为例,假设灯泡寿命是个随机变量,概率密度函数为f(t),失败率r(t)的含义是指在t时刻,该灯泡在t+dt这段时间内失效的概率。这个例子中,无记忆性可以理解为r(t)是个常数,因为灯泡的失效跟它正常工作了多久无关,所以它在任何时刻的失败率都是相等的。容易证明若
,那么对应的概率分布就是参数为
的指数分布,
通常称为指数分布的速率。(可以给予
一个物理含义,若时间单位是s(秒),则
的量纲为1/s,也就是速率,期望