指数随机变量 泊松过程跳_随机过程学习笔记(1):指数分布与泊松过程

这篇博客是作者自学随机过程的笔记,主要介绍了指数分布和泊松过程。文章首先回顾了概率论的基本概念,然后详细阐述了指数分布的定义、期望、方差、无记忆性等特性,以及与失败率的关系。接着,博主解释了泊松过程的定义、性质,包括其作为计数过程的特征、平稳增量和独立增量的概念,以及泊松过程与指数分布的关系。最后,博主通过定理介绍了泊松过程在事件发生次数估算和到达时间分布中的应用。
摘要由CSDN通过智能技术生成

笔记主要基于中文版《应用随机过程 Introduction to Probability Models 》(Sheldon M. Ross),只有非常少的一部分是我自己的注解。写这个笔记的目的是自己复习用,阅读需要一定的微积分和概率论基础。本人为初学者,且全部为自学,如果笔记中有错误,欢迎指正。

提示:概率论和指数分布作为本节的基础,我把一些重要公式写在开头,但是可以直接从泊松过程开始阅读,在泊松过程中用到相关知识点的时候再回头阅读。当然,从头读到尾也许理解得更好。

概率论复习

随机过程是概率论的延申。因为我本科并没有系统学过概率论,所以有必要把一些概率论常用公式罗列在开头。

随机变量用大写字母X表示,随机变量的取值用小写字母x表示,期望和方差的定义如下

利用二阶矩求方差的方法有时比较实用。

通过取条件求概率:

通过取条件求期望:

通过取条件求方差(条件方差公式):

两个独立随机变量X,Y的和的分布计算也很常用,也就是卷积

指数分布及其重要性质

指数分布的定义:

容易计算指数分布的期望为

,方差为

. 对应的CDF(累积分布函数)为

指数分布的重要性质1:指数分布是无记忆的,而且是唯一具有无记忆性质的概率分布。

所谓无记忆的意思是

这个性质可以简单地用累计分布函数来验证,因为

为了具象理解无记忆性,可以举一个例子:假设一个灯泡的寿命是个随机变量X,按照

指数分布。已知灯泡已经正常工作了t个单位时间,那么它还剩下的寿命的概率分布仍然是同样的指数分布。或者说,不管这个灯泡正常工作了多久,它剩下的寿命都是同一个指数分布,期望都是

此外,为了更好地理解指数分布,我们定义一个失败率r(t)

无论什么分布都可以定义r(t),而且r(t)唯一确定概率分布。以灯泡寿命为例,假设灯泡寿命是个随机变量,概率密度函数为f(t),失败率r(t)的含义是指在t时刻,该灯泡在t+dt这段时间内失效的概率。这个例子中,无记忆性可以理解为r(t)是个常数,因为灯泡的失效跟它正常工作了多久无关,所以它在任何时刻的失败率都是相等的。容易证明若

,那么对应的概率分布就是参数为

的指数分布,

通常称为指数分布的速率。(可以给予

一个物理含义,若时间单位是s(秒),则

的量纲为1/s,也就是速率,期望

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值