指数随机变量 泊松过程跳_随机过程 笔记2泊松过程

af471b93c445d0c026f5696fbbf66b78.png

关于泊松(Poisson)过程,先给出它的两个等价定义

定义:(计数过程,泊松过程)
随机过程
表示
时间内事件
发生的次数,满足
且取值为整数,当
时,
表示
时间内事件
发生的次数,那么
是一个
计数过程
随机过程
满足以下三条件:

1.
是计数过程,且

2. 平稳独立增量过程
3. 存在
使

或者 3. 存在
使

那么
是一个
泊松过程。

平稳过程保证了随着时间变动,泊松过程产生的随机变量是同分布的,而独立增量过程则保证了随着时间变动前后过程的独立性,所以平稳独立增量就就可以理解成连续情形下的

。在随机过程中,基于平稳独立增量过程的条件,我们往往可以通过类似在一个小区间
中发生事件的个数,能够推出整个随机过程的信息。

看泊松分布第一个定义的第三条,直观解释就是在一个很小的时间区间里,事件发生一次的概率也是很小的。

观察泊松 过程的样本路径,记

表示第
次和第
次事件发生的时间间隔,再记
表示第n次事件发生的时刻。
定理 :(
是服从参数为
的指数分布。
是服从参数为
分布。

指数分布是连续性随机变量中唯一一个具有无记忆性的分布。上面两个定理形象地刻画了泊松分布的特点,同时也是泊松分布的充分性描述,写成如下定理:

定理 :
是服从参数为
的指数分布,
为 泊松 过程。

也可以用均匀分布来刻画泊松过程,

定理:(泊松过程和均匀分布)
上的均匀分布。那么
的顺序统计量联合分布就是条件分布

所以我们也可以用均匀分布来产生泊松过程了,泊松过程还是很容易产生的。再说明一下过程的稀疏(thinning),

定理:(稀疏)
表示Poisson 过程,如果每个事件被记录的概率是
,且是否被记录是互相独立的,则被记录的事件
是强度为
的Poisson 过程。

可以发现泊松过程在经过稀疏过后仍然是泊松过程,只不过是参数减小为

了。

非齐次泊松过程,复合泊松过程用途就很多了。。

定义:(非齐次泊松过程)
计数过程
,满足

1.

2. 独立增量过程
3. 存在
或者 3.
是具有参数
的泊松分布。

非齐次泊松过程由于强度与时间相关了,自然不具有平稳性。定义第3条两个叙述的等价性文献中会有说明。

定义:(复合泊松过程)
如果
是一列独立同分布的随机变量,且与
独立,则称过程
复合泊松过程定理:(复合泊松过程)
复合泊松过程
具有如下性质,1. 是平稳独立增量过程 2. 若
,则

定理的证明用到了的技巧在泊松的定义等价性中也用到。

定义:(条件泊松过程)

接下来介绍由泊松过程推广而来的更新过程。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要模拟含复合泊松点过程的随机微分方程,可以使用Matlab随机过程工具箱(Stochastic Processes Toolbox)和随机微分方程工具箱(Stochastic Differential Equation Toolbox)。 首先,需要定义含复合泊松点过程的随机微分方程。例如,可以考虑如下的随机微分方程: dX(t) = [a - b*X(t)] dt + σX dW(t) + Σ_{i=1}^{N(t)} Y_i dZ_i(t) 其,X(t) 是随机过程,a、b、σX 是常数,W(t) 是标准布朗运动,N(t) 是泊松过程,满足 Poisson 过程条件: P{N(t) = k} = [λ(t)dt]^k / k! P{N(t) = k} = 0 (k不为整数) 其,λ(t) 是随时间变化的强度函数。 Y_i 和 dZ_i(t) 是独立的随机变量和过程,表示跃时随机变量和时间的值,满足: E[Y_i] = μ Var[Y_i] = σ^2 E[dZ_i(t)] = 0 Cov[dZ_i(t),dZ_j(t)] = δ_{i,j} dt 其,δ_{i,j} 是克罗内克 δ 符号。 然后,可以使用Matlab的stochasticeulerequation函数进行欧拉-马尔科夫模拟。具体地,可以使用以下代码进行模拟: ```matlab % 定义含复合泊松点过程的随机微分方程参数 a = 1; b = 1; sigmaX = 0.1; lambda = @(t) 0.2 + 0.1*sin(t); mu = 0.5; sigmaY = 0.2; % 定义随机微分方程 f = @(t,X) a - b*X; g = @(t,X) sigmaX; h = @(t,X) poissrnd(lambda(t)); j = @(t,X,Y,Z) mu*Y; k = @(t,X,Y,Z) sigmaY*Z; % 定义初始值和时间网格 X0 = 0; tspan = [0 10]; dt = 0.01; t = tspan(1):dt:tspan(2); % 进行欧拉-马尔科夫模拟 X = stochasticeulerequation(f,g,h,t,X0,j,k); plot(t,X); ``` 在上述代码,stochasticeulerequation函数用于进行欧拉-马尔科夫模拟,f、g、h、j、k 分别是随机微分方程的漂移项、扩散项、泊松点过程强度函数、跃项随机变量跃项时间过程,X0 是初始值,tspan 是时间区间,dt 是时间步长,poissrnd函数用于生成泊松分布的随机数。最后,使用plot函数将模拟结果进行可视化。 需要注意的是,含复合泊松点过程的随机微分方程模拟可能会出现数值不稳定的情况,建议使用较小的时间步长进行模拟,并进行数值稳定性检验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值