lstm预测模型_基于LSTMConvolutional网络的光伏功率预测

基于CNN和LSTM的混合预测模型不仅可以利用CNN模型消除噪声并考虑多变量之间的相关性来提取光伏数据的空间特征,还可以利用LSTM模型对时间信息进行建模并提取光伏数据的时间特征,进而提高光伏功率预测精度。然而考虑到时间特征为光伏数据的基础特征而空间特征为隐层特征,因此在建立混合光伏功率预测模型时应考虑首先提取光伏数据的时间特征然后提取光伏数据的空间特征。

f46175dc4d4d6b5006d71f36da69e62f.png

王科俊教授团队在Energy期刊(JCR Q1区,中科院Top期刊,IF=5.537)上发表文章(Volume 189, December 2019, 116225),从光伏数据的机理特征出发提出了基于LSTM-Convolutional网络的光伏功率预测模型,并将其与其他深度预测模型进行了对比,验证了混合模型的连接顺序对光伏功率预测模型精度的影响。

不同模型在不同误差评价指标下的预测误差值

Models

Results

MAE

RMSE

MAPE

SDE

LSTM

0.327

0.709

0.062

0.689

CNN

0.304

0.822

0.058

0.790

CNN-LSTM

0.294

0.693

0.056

0.677

LSTM-CNN

0.221

0.621

0.042

0.635

研究中给出了各误差评价指标下不同模型的误差提升百分比比较结果,验证了所提模型在光伏功率预测上的有效性。

不同模型在不同误差评价指标下的提升百分比比较

LSTM vs. CNN-LSTM

CNN vs. CNN-LSTM

LSTM vs. LSTM-CNN

CNN vs. LSTM-CNN

CNN-LSTM vs. LSTM-CNN

PMAE

10.092%

3.289%

32.416%

27.303%

24.830%

PRMSE

2.257%

15.693%

12.412%

24.453%

10.390%

PMAPE

9.677%

3.448%

32.258%

27.586%

25.000%

PSDE

1.742%

14.304%

7.837%

19.620%

6.204%

论文链接:

https://www-sciencedirect-com-443.wvpn.hrbeu.edu.cn/science/article/pii/S0360544219319206

编辑:吴琦 冯赞元

责任编辑:何东旭

审核:蔡成涛

哈尔滨工程大学自动化学院

2020年6月1日

### 回答1: LSTM(长短时记忆网络)是一种适用于序列数据建模的神经网络模型,它能够捕捉序列中的长期依赖关系。多变量序列堆叠式LSTM模型可以用于多个时间序列数据之间的关系建模。本文实现的是一个多分类问题,使用Python编写代码。 在代码实现过程中,首先需要导入必要的库和数据。数据包含多个变量,需要对变量进行归一化处理。然后将训练数据和测试数据拆分,并将数据转换成LSTM模型要求的输入格式。接着搭建LSTM模型,包括堆叠式LSTM层和输出层。训练模型时使用交叉熵损失函数和随机梯度下降优化器。每个epoch结束后计算模型在测试集上的准确率,并保存训练好的模型。 在预测过程中,需要对新数据进行同样的归一化处理,并将其转换成LSTM模型输入格式。使用训练好的模型对新数据进行预测,输出结果为各个分类的概率值。根据概率值选择最终的分类结果,并输出预测结果。 总之,多变量序列堆叠式LSTM模型可以用于多个变量的序列数据建模和多分类问题。使用Python编写代码实现时需注意数据预处理、LSTM模型的搭建和训练、预测过程中的数据处理和结果输出等细节。 ### 回答2: LSTM是循环神经网络(RNN)的一种重要变形,可以对时间序列数据进行建模,如自然语言处理和股票价格预测等。而多变量序列堆叠式LSTM模型是一种可以处理多个变量的神经网络模型,适用于多变量时间序列的建模问题。在多分类问题中,我们要使用LSTM预测模型预测数据的类别,即将时间序列数据映射为离散的输出结果。 在Python中,可以使用TensorFlow或Keras等深度学习框架实现多变量序列堆叠式LSTM模型多分类问题。首先,需要准备训练数据和测试数据,以及对数据进行预处理和特征工程。接着,可以构建LSTM模型,选择适当的超参数和激活函数,如ReLU或sigmoid函数。在进行训练时,可以使用交叉熵等损失函数和Adam等优化器进行优化。 在实现过程中,需要注意LSTM模型的训练时间较长,需要耐心等待。同时,也要考虑数据的规模和质量对模型的影响,可以通过数据分析和可视化来优化模型效果。最后,需要对模型进行评估和验证,包括计算准确率、精度和召回率等指标,以及绘制ROC曲线和混淆矩阵等图表。 综上所述,LSTM模型是一种适用于多变量时间序列建模和多分类问题的有效方法。在Python中,可以通过深度学习框架实现多变量序列堆叠式LSTM模型多分类,提高模型效果和预测性能。 ### 回答3: LSTM(长短时记忆神经网络)是一种能够处理序列数据的神经网络,可以有效解决传统的RNN(循环神经网络)存在的梯度消失和梯度爆炸问题。在多变量序列的预测中,堆叠式LSTM能够将不同变量作为输入进行模型训练,从而提高预测的准确性。 Python中有很多深度学习的框架可以实现LSTM模型,如Tensorflow、Keras、PyTorch等。下面以Keras实现为例,具体步骤如下: 1.数据预处理,包括数据的归一化、分割训练集和测试集等。 2.构建LSTM模型,以多层堆叠式LSTM为例,代码如下: from keras.models import Sequential from keras.layers import LSTM, Dense model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(LSTM(units=50, return_sequences=True)) model.add(LSTM(units=50)) model.add(Dense(units=3, activation='softmax')) 3.模型编译,包括选择损失函数、优化器和评价指标等。 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 4.模型训练,可以通过fit()函数进行训练,代码如下: history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.2) 5.模型预测,使用predict()函数对测试集进行预测,代码如下: y_pred = model.predict(X_test) 6.模型评估,包括准确率、精确率、召回率等指标的计算。 以上是使用Keras实现多变量序列堆叠式LSTM模型多分类的基本步骤,可以根据自己的实际需要进行调整。除了堆叠式LSTM,还有循环堆叠式LSTM和双向LSTM等不同变种的结构可以选择,也可以通过调整模型参数和网络结构等进一步提高预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值