信度效度难度区分度是什么意思_6种常用的数据分析方法-信度分析

信度是评估测量工具可靠性的指标,关注测量结果的一致性。内在信度考察问题间的一致性,外在信度关注不同时间测量的一致性。Cronbach α系数和折半信度是衡量内在信度的常见方法,信度系数高于0.7被认为是可接受的。在数据分析中,信度分析用于确保调查问卷结果的可靠性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

收集数据时,常出现三种测量误差。

一、系统误差。如秤本身的误差,使测量结果与真实情况产生误差,这次误差在多次测量中通常比较稳定。

二、随机误差,即在相同条件下,多次测量同一量时出现单个无规律性的、不可预知的误差,随着测量次数增加,误差逐渐降低,即具有抵偿性的误差。

三、粗差,即粗心带来的错误。如歪曲测量结果的误差。称为坏值或异常值,在分析中可作误差分析剔除。异常值要注意某些异常值会含有重要信息。如:研究的新发现。

测量中的误差使得测量结果不完全一致,会产生两类问题:

  1. 测量结果一致性程度问题

如:不同条件下所得数据的关系如何?测量数据与真实数据的接近程度如何?

2. 造成测量数据变异的原因问题

如:是什么因素造成了数据的不一致性?各种因素产生效应的相对比例如何?

问题1中估计结果的精确度,反映随机误差大小的程度的问题。即是用“信度”概念来描述的。

信度用来测量工具可靠性的指标,它用来对测量一致性程度进行估计。如果说某测量工具是可靠的,则表示这一工具在测量多次时,其测量结果是一致而稳定的

信度用公式表示就是:

47e007a73b830b69b7067eb2100b7fc5.png

公式含义为:在一组测试分数中:真实值的方差实得数据方差

6da3f75d67e3609cf0f36945ac7093f6.png

指测试的信度;

fae5e87bf4f3954fea99b43a1f5cfee8.png

指真实值的样本方差;

2ee6055d4c82723a02962c86ffaf16fe.png

指实得数据的样本方差。

信度类型

在数据分析中,信度分析常用于调查问卷。即在对问卷结果进行统计分析之前先对问卷的信度(reliability)、效度(validity)进行分析,确保分析结果是可靠和准确的。

信度分为内在信度外在信度

  1. 在信度:指调查问卷中的一组问题(或整个调查表)是否测量的是同一个主题,即问题间的内在一致性如何。
  • 内在信度系数0.8以上,可以认为调查表有较高的内在一致性。常用的内在信度系数为Cronbach α系数和折半信度。
  • Cronbach α系数判断量表的内部一致性,可被看作相关系数,即该量表与所有含有其他可能项目数的量表之间的相关系数。其大小可以反映量表受随机误差影响的程度,反映测试的可靠程度。系数值越大,则量表受随机误差的影响较小,测试可靠。
  • 折半信度是将调查题目分为两半,然后计算两部分各自的信度以及它们之间的相关性,以此为标准来衡量整个量表的信度,相关性高则表示信度好,相应的信度指标即为折半信度。

2. 外在信度:指在不同时间进行测量时调查问卷结果的一致性程度。最常用的外在信度指标是重测信度,即用同一问卷在不同时间对同一对象进行重复测量,然后计算一致程度。

信度结果

没有标准规定信度系数应当达到多少就表示调查问卷具备可信度,一般认为:

  • 信度系数大于0.9,信度佳;
  • 信度系数0.8~0.9之间,可接受;
  • 信度系数0.7~0.8之间,该调查问卷应进行修订,但仍有价值;
  • 信度系数低于0.7,调查问卷要重新设计

信度分析主要应用在用多个指标反映对象的研究中,通过对多维变量进行降维,达到既不影响研究对象,又降低研究难度的作用。

要注意的是,在复杂调查问卷中,往往包含多个调查主题,每一主题由一组问题来集中测量并获取信息。此时的信度分析应按问题组进行,即测量同一主题的一组问题之间的信度如何,而不是直接测量整个问卷信度。

关于系统误差大小程度的评估,使用的是效度概念。

效度是对一个测量工具所要测量的东西能测量到什么程度的估计,即测量值和真实值的接近程度。是描述工具有效性的指标,说明该测量工具的正确性程度。

效度分为表面效度、内容效度、结构效度,结构效度通过主成分分析来求得。效度高,信度一定高;但信度高,效度不一定高。

案例

某职业考评中44名工作人员的成绩见下表,其中:

  • A-填空题(18分)
  • B-选择题(12分)
  • C-简答题(30分)
  • D-计算题(10分)
  • E1-综合题一(15分)
  • E2-综合题二(15分)。

对考试试卷进行信度分析。

考试成绩

编号123456789101112131415
A121214141515141315141514141516
B10898991091110109101010
C181515161415141317161918182022
D576655610547101078
E10555555579577105
E20000556109131313131112
编号161718192021222324252627282930
A161616151716151715151616171617
B101111101212111111121111111011
C231922212323262224232425262221
D4710104978910881099
E171059899101010121381515
E2141212111310111213121211121312
编号3132333435363738394041424344
A1717161616171617171716171817
B1110111111101110111211101110
C3026242527252530252930283030
D108877910810101010810
E1713121512151512131013151515
E21013151314121213141312151313

分析过程:

  1. ABCDE1E2为变量,整理上表中数据为行44 列6的数据文件。
  2. 使用SPSS进行信度分析。

a. 选择菜单Analyze→Scale→Reliability Analysis,Reliability Analysis主对话框(图15-1)将变量A、B、C、D、E1、E2加入Items框中。

89213e55e09b008ddf7ef1f0f2315a10.png
图15-1

Model下拉列表中有5个信度模型,即不同的信度系数:

  • Alpha:即最常用的Cronbach α系数。
  • Solit-half:折半信度。
  • Guttman:该模型计算真实信度的Guttman’s下界,输出结果中的Lambda3就是Cronbach α系数。
  • Parallel:平行模型,该模型采用最大似然估计方法计算信度系数,它要求所有变量的方差齐,并且所有重测间的变异相等。
  • Strict parallel:严格平行模型,该模型也是采用最大似然估计方法计算信度系数,在平行模型的基础上还要求各变量的均数相等。

b. 打开Statistics对话框(15-2)。

选中Statistics对话框中Item、Scale和Scale if item deleted三项,单击Continue并确认完成设置。

bfb74532254f4b970688b114f5b41849.png
图15-2
  • Descriptives for:描述统计量。

Item:描述项目,给出各项目的均数、标准差和样本量。

Scale:描述总分;给出各项目总分的均数、方差、标准差和项目数。

Scale if item deleted:删除当前项目后问卷相应指标的改变情况,即敏感性分析。这一选项很重要,可以用来对问卷中的各项进行逐一分析,以达到改良问卷的目的。

  • Inter-item:项目间的相关矩阵和协方差阵。

Correlations:项目之间的相关矩阵;

Covariances:项目之间的协方差阵。

  • Summaries:对所有参与分析变量的二次指标再进行描述分析,可选择的二次指标有所有项目的Means(均数)、Variances(方差)、Covariances(协方差)和Correlations(相关系数)。以均数为例,在输出时会给出所有项目均数的均数、最大值、最小值、标准差、全矩、最大值与最小值之比和方差。
  • ANOAV Table:分析不同评分者对问卷评分的影响。

None:不进行分析。

F test:对各变量进行重复测量的方差分析,该方法适用于项目分值均呈正态分布时,等价于调用GLM中的重复测量方差分析过程。

Friedman chi-square:对各变量进行配伍设计的非参数分析,该方法适用于项目分值不呈正态或为有序分类时,等价于调用非参数分析中的K Related Samples过程。

Cochran chi-square:对各变量进行Cochran’s卡方检验,该方法适用于项目分值为二分类或无序分类时。

  • Hotelling’s T-square:Hotelling’s T2检验,是t检验向多元情况的推广,此处的目的是检验各项目的总体均数是否相等。
  • Tukey’s test of additivity:检验各项目得分之间是否存在相加作用的交互作用。
  • Intraclass correlation coefficient:组内相关系数(ICC)。采用随机效应模型分析各变量间的相关性。

C. 查看输出结果(15-3、15-4、15-5)。

20815365303830bc3df742ed2488e9d7.png
图15-3

15-3给出Cronbach α 信度系数:0.823,表示该考卷的内部信度比较好。

7ed3215d01795f1271ce67f9cb1a186f.png
图15-4

15-4给出6个项目总分的均数、方差和标准差。

6c9233f312fd3c249a5a5d312ecfb578.png
图15-5

15-5给出的是如果将相应的项目(题目)删除,则试卷总的信度会如何改变,包括:总分的均数改变、方差改变、该题与总分的相关系数和Cronbach α系数的改变情况。

最重要是后两项,如果相关系数太低,可考虑将该题删除。

观察结果不难看出:计算题(D)的相关系数非常低,即该题得分高低和总分高低相关性不大,该题在难度设计上不当,无法区分出学生水平。如果删除该题Cronbach α系数相对较大,则该题删除可提高试卷的信度,

输出结果显示,选择题(B)和计算题(D)的Cronbach α指标较高,原因结果分析在于选择题(B)是送分题,参考人员答得都比较好,无法区分出优劣;而计算题(D)可能出的偏,就算优秀的人员也不一定该题得分高。

根据结果可知,对该试卷进行优化调整可以将选择题(B)和计算题(D)更换或删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值